Unser Literaturverzeichnis dient als Referenz zu den verwendeten Quellen unserer genetischen Analysen. Damit bieten wir Ihnen einen genauen Überblick über unsere verwendete Literatur und stehen Ihnen bei Fragen dazu selbstverständlich jederzeit zur Verfügung.
Analysierte Themenbereiche
TNF-a (rs1800629):
Dereka, X., Mardas, N., Chin, S., Petrie, A., & Donos, N. (2012). A systematic review on the association between genetic predisposition and dental implant biological complications. Clinical oral implants research, 23(7), 775–788. https://doi.org/10.1111/j.1600-0501.2011.02329.x
Jacobi-Gresser, E., Huesker, K., & Schütt, S. (2013). Genetic and immunological markers predict titanium implant failure: a retrospective study. International journal of oral and maxillofacial surgery, 42(4), 537–543. https://doi.org/10.1016/j.ijom.2012.07.018
Nikolopoulos, G. K., Dimou, N. L., Hamodrakas, S. J., & Bagos, P. G. (2008). Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls. Journal of clinical periodontology, 35(9), 754–767. https://doi.org/10.1111/j.1600-051X.2008.01298.x
Wei, X. M., Chen, Y. J., Wu, L., Cui, L. J., Hu, D. W., & Zeng, X. T. (2016). Tumor necrosis factor-α G-308A (rs1800629) polymorphism and aggressive periodontitis susceptibility: a meta-analysis of 16 case-control studies. Scientific reports, 6, 19099. https://doi.org/10.1038/srep19099
IL6 (rs1800795):
Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J. S., Humphries, S., & Woo, P. (1998). The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. The Journal of clinical investigation, 102(7), 1369–1376. https://doi.org/10.1172/JCI2629
Huth, C., Heid, I. M., Vollmert, C., Gieger, C., Grallert, H., Wolford, J. K., Langer, B., Thorand, B., Klopp, N., Hamid, Y. H., Pedersen, O., Hansen, T., Lyssenko, V., Groop, L., Meisinger, C., Döring, A., Löwel, H., Lieb, W., Hengstenberg, C., Rathmann, W., … Illig, T. (2006). IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants‘ data from 21 studies. Diabetes, 55(10), 2915–2921. https://doi.org/10.2337/db06-0600
Illig, T., Bongardt, F., Schöpfer, A., Müller-Scholze, S., Rathmann, W., Koenig, W., Thorand, B., Vollmert, C., Holle, R., Kolb, H., Herder, C., & Kooperative Gesundheitsforschung im Raum Augsburg/Cooperative Research in the Region of Augsburg (2004). Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. The Journal of clinical endocrinology and metabolism, 89(10), 5053–5058. https://doi.org/10.1210/jc.2004-0355
IL1RN (rs195598):
Baradaran-Rahimi, H., Radvar, M., Arab, H. R., Tavakol-Afshari, J., & Ebadian, A. R. (2010). Association of interleukin-1 receptor antagonist gene polymorphisms with generalized aggressive periodontitis in an Iranian population. Journal of periodontology, 81(9), 1342–1346. https://doi.org/10.1902/jop.2010.100073
Braosi, A. P., de Souza, C. M., Luczyszyn, S. M., Dirschnabel, A. J., Claudino, M., Olandoski, M., Probst, C. M., Garlet, G. P., Pecoits-Filho, R., & Trevilatto, P. C. (2012). Analysis of IL1 gene polymorphisms and transcript levels in periodontal and chronic kidney disease. Cytokine, 60(1), 76–82. https://doi.org/10.1016/j.cyto.2012.06.006
Ciurla, A., Szymańska, J., Płachno, B. J., & Bogucka-Kocka, A. (2021). Polymorphisms of Encoding Genes IL1RN and P2RX7 in Apical Root Resorption in Patients after Orthodontic Treatment. International journal of molecular sciences, 22(2), 777. https://doi.org/10.3390/ijms22020777
Jacobi-Gresser, E., Huesker, K., & Schütt, S. (2013). Genetic and immunological markers predict titanium implant failure: a retrospective study. International journal of oral and maxillofacial surgery, 42(4), 537–543. https://doi.org/10.1016/j.ijom.2012.07.018
Komatsu, Y., Galicia, J. C., Kobayashi, T., Yamazaki, K., & Yoshie, H. (2008). Association of interleukin-1 receptor antagonist +2018 gene polymorphism with Japanese chronic periodontitis patients using a novel genotyping method. International journal of immunogenetics, 35(2), 165–170. https://doi.org/10.1111/j.1744-313X.2008.00757.x
Laine, M. L., Leonhardt, A., Roos-Jansåker, A. M., Peña, A. S., van Winkelhoff, A. J., Winkel, E. G., & Renvert, S. (2006). IL-1RN gene polymorphism is associated with peri-implantitis. Clinical oral implants research, 17(4), 380–385. https://doi.org/10.1111/j.1600-0501.2006.01249.x
Trevilatto, P. C., de Souza Pardo, A. P., Scarel-Caminaga, R. M., de Brito, R. B., Jr, Alvim-Pereira, F., Alvim-Pereira, C. C., Probst, C. M., Garlet, G. P., Sallum, A. W., & Line, S. R. (2011). Association of IL1 gene polymorphisms with chronic periodontitis in Brazilians. Archives of oral biology, 56(1), 54–62. https://doi.org/10.1016/j.archoralbio.2010.09.004
CRP (rs3093066):
Neubauer, O., König, D., & Wagner, K. H. (2008). Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. European journal of applied physiology, 104(3), 417–426. https://doi.org/10.1007/s00421-008-0787-6
Obisesan, T. O., Leeuwenburgh, C., Phillips, T., Ferrell, R. E., Phares, D. A., Prior, S. J., & Hagberg, J. M. (2004). C-reactive protein genotypes affect baseline, but not exercise training-induced changes, in C-reactive protein levels. Arteriosclerosis, thrombosis, and vascular biology, 24(10), 1874–1879. https://doi.org/10.1161/01.ATV.0000140060.13203.22
Phillips, T., Childs, A. C., Dreon, D. M., Phinney, S., & Leeuwenburgh, C. (2003). A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Medicine and science in sports and exercise, 35(12), 2032–2037. https://doi.org/10.1249/01.MSS.0000099112.32342.10
IL6R (rs2228145):
Galicia, J. C., Tai, H., Komatsu, Y., Shimada, Y., Akazawa, K., & Yoshie, H. (2004). Polymorphisms in the IL-6 receptor (IL-6R) gene: strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes and immunity, 5(6), 513–516. https://doi.org/10.1038/sj.gene.6364120
Gray, S. R., Clifford, M., Lancaster, R., Leggate, M., Davies, M., & Nimmo, M. A. (2009). The response of circulating levels of the interleukin-6/interleukin-6 receptor complex to exercise in young men. Cytokine, 47(2), 98–102. https://doi.org/10.1016/j.cyto.2009.05.011
Jones, S. A., Richards, P. J., Scheller, J., & Rose-John, S. (2005). IL-6 transsignaling: the in vivo consequences. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 25(5), 241–253. DOI: 10.1089/jir.2005.25.241
Pedersen, B. K., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., Wolsk-Petersen, E., & Febbraio, M. (2004). The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor?. The Proceedings of the Nutrition Society, 63(2), 263–267. https://doi.org/10.1079/PNS2004338
Reich, D., Patterson, N., Ramesh, V., De Jager, P. L., McDonald, G. J., Tandon, A., Choy, E., Hu, D., Tamraz, B., Pawlikowska, L., Wassel-Fyr, C., Huntsman, S., Waliszewska, A., Rossin, E., Li, R., Garcia, M., Reiner, A., Ferrell, R., Cummings, S., Kwok, P. Y., … Health, Aging and Body Composition (Health ABC) Study (2007). Admixture mapping of an allele affecting interleukin 6 soluble receptor and interleukin 6 levels. American journal of human genetics, 80(4), 716–726. https://doi.org/10.1086/513206
Robson-Ansley, P., Walshe, I., & Ward, D. (2011). The effect of carbohydrate ingestion on plasma interleukin-6, hepcidin and iron concentrations following prolonged exercise. Cytokine, 53(2), 196–200. https://doi.org/10.1016/j.cyto.2010.10.001
LCT (rs4988235):
Almon, R., Sjöström, M., & Nilsson, T. K. (2013). Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. Journal of nutritional science, 2, e26. https://doi.org/10.1017/jns.2013.11
Bácsi, K., Kósa, J. P., Lazáry, A., Balla, B., Horváth, H., Kis, A., Nagy, Z., Takács, I., Lakatos, P., & Speer, G. (2009). LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 20(4), 639–645. https://doi.org/10.1007/s00198-008-0709-9
Koek, W. N., van Meurs, J. B., van der Eerden, B. C., Rivadeneira, F., Zillikens, M. C., Hofman, A., Obermayer-Pietsch, B., Lips, P., Pols, H. A., Uitterlinden, A. G., & van Leeuwen, J. P. (2010). The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 25(9), 1980–1987. https://doi.org/10.1002/jbmr.83
Kuchay, R. A., Thapa, B. R., Mahmood, A., & Mahmood, S. (2011). Effect of C/T -13910 cis-acting regulatory variant on expression and activity of lactase in Indian children and its implication for early genetic screening of adult-type hypolactasia. Clinica chimica acta; international journal of clinical chemistry, 412(21-22), 1924–1930. https://doi.org/10.1016/j.cca.2011.06.032
Laaksonen, M. M., Mikkilä, V., Räsänen, L., Rontu, R., Lehtimäki, T. J., Viikari, J. S., Raitakari, O. T., & Cardiovascular Risk in Young Finns Study Group (2009). Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. The British journal of nutrition, 102(1), 8–17. https://doi.org/10.1017/S0007114508184677
Tolonen, S., Laaksonen, M., Mikkilä, V., Sievänen, H., Mononen, N., Räsänen, L., Viikari, J., Raitakari, O. T., Kähönen, M., Lehtimäki, T. J., & Cardiovascular Risk in Young Finns Study Group (2011). Lactase gene c/t(-13910) polymorphism, calcium intake, and pQCT bone traits in Finnish adults. Calcified tissue international, 88(2), 153–161. https://doi.org/10.1007/s00223-010-9440-6
HFE (rs1800562), HFE (rs1799945):
Beutler, E., West, C., & Gelbart, T. (1997). HLA-H and associated proteins in patients with hemochromatosis. Molecular medicine (Cambridge, Mass.), 3(6), 397–402.
Carella, M., D’Ambrosio, L., Totaro, A., Grifa, A., Valentino, M. A., Piperno, A., Girelli, D., Roetto, A., Franco, B., Gasparini, P., & Camaschella, C. (1997). Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. American journal of human genetics, 60(4), 828–832.
Jouanolle, A. M., Fergelot, P., Gandon, G., Yaouanq, J., Le Gall, J. Y., & David, V. (1997). A candidate gene for hemochromatosis: frequency of the C282Y and H63D mutations. Human genetics, 100(5-6), 544–547. https://doi.org/10.1007/s004390050549
Moirand, R., Deugnier, Y., & Brissot, P. (1999). Haemochromatosis and HFE gene. Acta gastro-enterologica Belgica, 62(4), 403–409.
Mura, C., Raguenes, O., & Férec, C. (1999). HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood, 93(8), 2502–2505.
Vujić M. (2014). Molecular basis of HFE-hemochromatosis. Frontiers in pharmacology, 5, 42. https://doi.org/10.3389/fphar.2014.00042
HFE (rs1800730):
Asberg, A., Thorstensen, K., Hveem, K., & Bjerve, K. S. (2002). Hereditary hemochromatosis: the clinical significance of the S65C mutation. Genetic testing, 6(1), 59–62. https://doi.org/10.1089/109065702760093933
Crownover, B. K., & Covey, C. J. (2013). Hereditary hemochromatosis. American family physician, 87(3), 183–190.
de Juan, D., Reta, A., Castiella, A., Pozueta, J., Prada, A., & Cuadrado, E. (2001). HFE gene mutations analysis in Basque hereditary haemochromatosis patients and controls. European journal of human genetics : EJHG, 9(12), 961–964. https://doi.org/10.1038/sj.ejhg.5200731
Wallace, D. F., Walker, A. P., Pietrangelo, A., Clare, M., Bomford, A. B., Dixon, J. L., Powell, L. W., Subramaniam, V. N., & Dooley, J. S. (2002). Frequency of the S65C mutation of HFE and iron overload in 309 subjects heterozygous for C282Y. Journal of hepatology, 36(4), 474–479. https://doi.org/10.1016/s0168-8278(01)00304-x
VDR rs1544410:
Creatsa, M., Pliatsika, P., Kaparos, G., Antoniou, A., Armeni, E., Tsakonas, E., Panoulis, C., Alexandrou, A., Dimitraki, E., Christodoulakos, G., & Lambrinoudaki, I. (2011). The effect of vitamin D receptor BsmI genotype on the response to osteoporosis treatment in postmenopausal women: a pilot study. The journal of obstetrics and gynaecology research, 37(10), 1415–1422. https://doi.org/10.1111/j.1447-0756.2011.01557.x
Jia, F., Sun, R. F., Li, Q. H., Wang, D. X., Zhao, F., Li, J. M., Pu, Q., Zhang, Z. Z., Jin, Y., Liu, B. L., & Xiong, Y. (2013). Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genetic testing and molecular biomarkers, 17(1), 30–34. https://doi.org/10.1089/gtmb.2012.0267
Marc, J., Prezelj, J., Komel, R., & Kocijancic, A. (1999). VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 10(4), 303–306. https://doi.org/10.1007/s001980050231
Mossetti, G., Gennari, L., Rendina, D., De Filippo, G., Merlotti, D., De Paola, V., Fusco, P., Esposito, T., Gianfrancesco, F., Martini, G., Nuti, R., & Strazzullo, P. (2008). Vitamin D receptor gene polymorphisms predict acquired resistance to clodronate treatment in patients with Paget’s disease of bone. Calcified tissue international, 83(6), 414–424. https://doi.org/10.1007/s00223-008-9193-7
Palomba, S., Orio, F., Jr, Russo, T., Falbo, A., Tolino, A., Manguso, F., Nunziata, V., Mastrantonio, P., Lombardi, G., & Zullo, F. (2005). BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 16(8), 943–952. https://doi.org/10.1007/s00198-004-1800-5
Palomba, S., Numis, F. G., Mossetti, G., Rendina, D., Vuotto, P., Russo, T., Zullo, F., Nappi, C., & Nunziata, V. (2003). Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Human reproduction (Oxford, England), 18(1), 192–198. https://doi.org/10.1093/humrep/deg031
APOA1 (rs670):
Angotti, E., Mele, E., Costanzo, F., & Avvedimento, E. V. (1994). A polymorphism (G–>A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. The Journal of biological chemistry, 269(26), 17371–17374.
Juo, S. H., Wyszynski, D. F., Beaty, T. H., Huang, H. Y., & Bailey-Wilson, J. E. (1999). Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. American journal of medical genetics, 82(3), 235–241.
Mata, P., Lopez-Miranda, J., Pocovi, M., Alonso, R., Lahoz, C., Marin, C., Garces, C., Cenarro, A., Perez-Jimenez, F., de Oya, M., & Ordovas, J. M. (1998). Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis, 137(2), 367–376. https://doi.org/10.1016/s0021-9150(97)00265-7
Miles, R. R., Perry, W., Haas, J. V., Mosior, M. K., N’Cho, M., Wang, J. W., Yu, P., Calley, J., Yue, Y., Carter, Q., Han, B., Foxworthy, P., Kowala, M. C., Ryan, T. P., Solenberg, P. J., & Michael, L. F. (2013). Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. The Journal of biological chemistry, 288(9), 6386–6396. https://doi.org/10.1074/jbc.M112.410092
Ordovas, J. M., Corella, D., Cupples, L. A., Demissie, S., Kelleher, A., Coltell, O., Wilson, P. W., Schaefer, E. J., & Tucker, K. (2002). Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. The American journal of clinical nutrition, 75(1), 38–46. https://doi.org/10.1093/ajcn/75.1.38
Ordovas J. M. (2002). Gene-diet interaction and plasma lipid responses to dietary intervention. Biochemical Society transactions, 30(2), 68–73.
Ruaño, G., Seip, R. L., Windemuth, A., Zöllner, S., Tsongalis, G. J., Ordovas, J., Otvos, J., Bilbie, C., Miles, M., Zoeller, R., Visich, P., Gordon, P., Angelopoulos, T. J., Pescatello, L., Moyna, N., & Thompson, P. D. (2006). Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis, 185(1), 65–69. https://doi.org/10.1016/j.atherosclerosis.2005.05.029
Rudkowska, I., Dewailly, E., Hegele, R. A., Boiteau, V., Dubé-Linteau, A., Abdous, B., Giguere, Y., Chateau-Degat, M. L., & Vohl, M. C. (2013). Gene-diet interactions on plasma lipid levels in the Inuit population. The British journal of nutrition, 109(5), 953–961. https://doi.org/10.1017/S0007114512002231
AGT (rs699):
Corvol, P., & Jeunemaitre, X. (1997). Molecular genetics of human hypertension: role of angiotensinogen. Endocrine reviews, 18(5), 662–677. https://doi.org/10.1210/edrv.18.5.0312
Hunt, S. C., Cook, N. R., Oberman, A., Cutler, J. A., Hennekens, C. H., Allender, P. S., Walker, W. G., Whelton, P. K., & Williams, R. R. (1998). Angiotensinogen genotype, sodium reduction, weight loss, and prevention of hypertension: trials of hypertension prevention, phase II. Hypertension (Dallas, Tex. : 1979), 32(3), 393–401. https://doi.org/10.1161/01.hyp.32.3.393
Jeunemaitre, X., Soubrier, F., Kotelevtsev, Y. V., Lifton, R. P., Williams, C. S., Charru, A., Hunt, S. C., Hopkins, P. N., Williams, R. R., & Lalouel, J. M. (1992). Molecular basis of human hypertension: role of angiotensinogen. Cell, 71(1), 169–180. https://doi.org/10.1016/0092-8674(92)90275-h
Nakajima, T., Jorde, L. B., Ishigami, T., Umemura, S., Emi, M., Lalouel, J. M., & Inoue, I. (2002). Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. American journal of human genetics, 70(1), 108–123. https://doi.org/10.1086/338454
Norat, T., Bowman, R., Luben, R., Welch, A., Khaw, K. T., Wareham, N., & Bingham, S. (2008). Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. The American journal of clinical nutrition, 88(2), 392–397. https://doi.org/10.1093/ajcn/88.2.392
Svetkey, L. P., Moore, T. J., Simons-Morton, D. G., Appel, L. J., Bray, G. A., Sacks, F. M., Ard, J. D., Mortensen, R. M., Mitchell, S. R., Conlin, P. R., Kesari, M., & DASH collaborative research group (2001). Angiotensinogen genotype and blood pressure response in the Dietary Approaches to Stop Hypertension (DASH) study. Journal of hypertension, 19(11), 1949–1956. https://doi.org/10.1097/00004872-200111000-00004
GSTP1 (rs1695):
Rahbar, M. H., Samms-Vaughan, M., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakspeare-Pellington, S., Loveland, K. A., Beecher, C., & McLaughlin, W. (2021). Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 18(4), 1377. https://doi.org/10.3390/ijerph18041377
Rahbar, M. H., Samms-Vaughan, M., Pitcher, M. R., Bressler, J., Hessabi, M., Loveland, K. A., Christian, M. A., Grove, M. L., Shakespeare-Pellington, S., Beecher, C., McLaughlin, W., & Boerwinkle, E. (2016). Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 13(11), 1095. https://doi.org/10.3390/ijerph13111095
Saad-Hussein, A., Noshy, M., Taha, M., El-Shorbagy, H., Shahy, E., & Abdel-Shafy, E. A. (2017). GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutation research. Genetic toxicology and environmental mutagenesis, 819, 20–25. https://doi.org/10.1016/j.mrgentox.2017.05.005
Singh, S., Kumar, V., Singh, P., Thakur, S., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2011). Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 725(1-2), 36–42. https://doi.org/10.1016/j.mrgentox.2011.06.006
Valeeva, E. T., Mukhammadiyeva, G. F., & Bakirov, A. B. (2020). Polymorphism of Glutathione S-transferase Genes and the Risk of Toxic Liver Damage in Petrochemical Workers. The international journal of occupational and environmental medicine, 11(1), 53–58. https://doi.org/10.15171/ijoem.2020.1771
Wong, R. H., Chang, S. Y., Ho, S. W., Huang, P. L., Liu, Y. J., Chen, Y. C., Yeh, Y. H., & Lee, H. S. (2008). Polymorphisms in metabolic GSTP1 and DNA-repair XRCC1 genes with an increased risk of DNA damage in pesticide-exposed fruit growers. Mutation research, 654(2), 168–175. https://doi.org/10.1016/j.mrgentox.2008.06.005
GSTM1 (Null-Allel):
Aliomrani, M., Sahraian, M. A., Shirkhanloo, H., Sharifzadeh, M., Khoshayand, M. R., & Ghahremani, M. H. (2017). Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(7), 1271–1278. https://doi.org/10.1007/s10072-017-2934-5
Barrón Cuenca, J., Tirado, N., Barral, J., Ali, I., Levi, M., Stenius, U., Berglund, M., & Dreij, K. (2019). Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. The Science of the total environment, 695, 133942. https://doi.org/10.1016/j.scitotenv.2019.133942
de Oliveira, A. Á., de Souza, M. F., Lengert, A.v, de Oliveira, M. T., Camargo, R. B., Braga, G. Ú., Cólus, I. M., Barbosa, F., Jr, & Barcelos, G. R. (2014). Genetic polymorphisms in glutathione (GSH-) related genes affect the plasmatic Hg/whole blood Hg partitioning and the distribution between inorganic and methylmercury levels in plasma collected from a fish-eating population. BioMed research international, 2014, 940952. https://doi.org/10.1155/2014/940952
Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132
Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178
Lee, J. U., Jeong, J. Y., Kim, M. K., Min, S. A., Park, J. S., & Park, C. S. (2022). Association of GSTM1 and GSTT1 Null Genotypes with Toluene Diisocyanate-Induced Asthma. Canadian respiratory journal, 2022, 7977937. https://doi.org/10.1155/2022/7977937
Santillán-Sidón, P., Pérez-Morales, R., Anguiano, G., Ruiz-Baca, E., Osten, J. R., Olivas-Calderón, E., & Vazquez-Boucard, C. (2020). Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. Environmental science and pollution research international, 27(34), 43223–43232. https://doi.org/10.1007/s11356-020-10206-3
Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652
Sirivarasai, J., Wananukul, W., Kaojarern, S., Chanprasertyothin, S., Thongmung, N., Ratanachaiwong, W., Sura, T., & Sritara, P. (2013). Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. BioMed research international, 2013, 474963. https://doi.org/10.1155/2013/474963
Singh, S., Kumar, V., Singh, P., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2012). Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 741(1-2), 101–108. https://doi.org/10.1016/j.mrgentox.2011.11.001
Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8
GSTT1 (Null-Allel):
Ahluwalia, M., & Kaur, A. (2018). Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environmental science and pollution research international, 25(12), 11981–11986. https://doi.org/10.1007/s11356-018-1459-7
Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132
Ercegovac, M., Jovic, N., Sokic, D., Savic-Radojevic, A., Coric, V., Radic, T., Nikolic, D., Kecmanovic, M., Matic, M., Simic, T., & Pljesa-Ercegovac, M. (2015). GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in progressive myoclonus epilepsy: A Serbian case-control study. Seizure, 32, 30–36. https://doi.org/10.1016/j.seizure.2015.08.010
Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178
Goodrich, J. M., Wang, Y., Gillespie, B., Werner, R., Franzblau, A., & Basu, N. (2011). Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicology and applied pharmacology, 257(2), 301–308. https://doi.org/10.1016/j.taap.2011.09.014
Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652
Sun, B., Song, J., Wang, Y., Jiang, J., An, Z., Li, J., Zhang, Y., Wang, G., Li, H., Alexis, N. E., Jaspers, I., & Wu, W. (2021). Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. Environmental pollution (Barking, Essex : 1987), 285, 117215. https://doi.org/10.1016/j.envpol.2021.117215
Tahir, M., Rehman, M. Y. A., & Malik, R. N. (2021). Heavy metal-associated oxidative stress and glutathione S-transferase polymorphisms among E-waste workers in Pakistan. Environmental geochemistry and health, 43(11), 4441–4458. https://doi.org/10.1007/s10653-021-00926-x
Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8
Yohannes, Y. B., Nakayama, S. M. M., Yabe, J., Toyomaki, H., Kataba, A., Nakata, H., Muzandu, K., Ikenaka, Y., Choongo, K., & Ishizuka, M. (2022). Glutathione S-transferase gene polymorphisms in association with susceptibility to lead toxicity in lead- and cadmium-exposed children near an abandoned lead-zinc mining area in Kabwe, Zambia. Environmental science and pollution research international, 29(5), 6622–6632. https://doi.org/10.1007/s11356-021-16098-1
CYP1A1 (rs1048943) / (rs4646903):
Abbas, M., Srivastava, K., Imran, M., & Banerjee, M. (2014). Association of CYP1A1 gene variants rs4646903 (T>C) and rs1048943 (A>G) with cervical cancer in a North Indian population. European journal of obstetrics, gynecology, and reproductive biology, 176, 68–74. https://doi.org/10.1016/j.ejogrb.2014.02.036
Cosma, G., Crofts, F., Taioli, E., Toniolo, P., & Garte, S. (1993). Relationship between genotype and function of the human CYP1A1 gene. Journal of toxicology and environmental health, 40(2-3), 309–316. https://doi.org/10.1080/15287399309531796
Hou, L., Chatterjee, N., Huang, W. Y., Baccarelli, A., Yadavalli, S., Yeager, M., Bresalier, R. S., Chanock, S. J., Caporaso, N. E., Ji, B. T., Weissfeld, J. L., & Hayes, R. B. (2005). CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis, 26(6), 1122–1128. https://doi.org/10.1093/carcin/bgi054
Islam, M. S., Ahmed, M. U., Sayeed, M. S., Maruf, A. A., Mostofa, A. G., Hussain, S. M., Kabir, Y., Daly, A. K., & Hasnat, A. (2013). Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clinica chimica acta; international journal of clinical chemistry, 416, 11–19. https://doi.org/10.1016/j.cca.2012.11.011
Ji, Y. N., Wang, Q., & Suo, L. J. (2012). CYP1A1 Ile462Val polymorphism contributes to lung cancer susceptibility among lung squamous carcinoma and smokers: a meta-analysis. PloS one, 7(8), e43397. https://doi.org/10.1371/journal.pone.0043397
Naif, H. M., Al-Obaide, M. A. I., Hassani, H. H., Hamdan, A. S., & Kalaf, Z. S. (2018). Association of Cytochrome CYP1A1 Gene Polymorphisms and Tobacco Smoking With the Risk of Breast Cancer in Women From Iraq. Frontiers in public health, 6, 96. https://doi.org/10.3389/fpubh.2018.00096
Roszak, A., Lianeri, M., Sowińska, A., & Jagodziński, P. P. (2014). CYP1A1 Ile462Val polymorphism as a risk factor in cervical cancer development in the Polish population. Molecular diagnosis & therapy, 18(4), 445–450. https://doi.org/10.1007/s40291-014-0095-2
Sabitha, K., Reddy, M. V., & Jamil, K. (2010). Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer. Cancer epidemiology, 34(5), 587–592. https://doi.org/10.1016/j.canep.2010.05.002
Sengupta, D., Banerjee, S., Mukhopadhyay, P., Mitra, R., Chaudhuri, T., Sarkar, A., Bhattacharjee, G., Nath, S., Roychoudhury, S., Bhattacharjee, S., & Sengupta, M. (2021). A comprehensive meta-analysis and a case-control study give insights into genetic susceptibility of lung cancer and subgroups. Scientific reports, 11(1), 14572. https://doi.org/10.1038/s41598-021-92275-z
CYP1B1 (rs1056836):
Butts, S. F., Sammel, M. D., Greer, C., Rebbeck, T. R., Boorman, D. W., & Freeman, E. W. (2014). Cigarettes, genetic background, and menopausal timing: the presence of single nucleotide polymorphisms in cytochrome P450 genes is associated with increased risk of natural menopause in European-American smokers. Menopause (New York, N.Y.), 21(7), 694–701. https://doi.org/10.1097/GME.0000000000000140
Butts, S. F., Freeman, E. W., Sammel, M. D., Queen, K., Lin, H., & Rebbeck, T. R. (2012). Joint effects of smoking and gene variants involved in sex steroid metabolism on hot flashes in late reproductive-age women. The Journal of clinical endocrinology and metabolism, 97(6), E1032–E1042. https://doi.org/10.1210/jc.2011-2216
Chen, B., Qiu, L. X., Li, Y., Xu, W., Wang, X. L., Zhao, W. H., & Wu, J. Q. (2010). The CYP1B1 Leu432Val polymorphism contributes to lung cancer risk: evidence from 6501 subjects. Lung cancer (Amsterdam, Netherlands), 70(3), 247–252. https://doi.org/10.1016/j.lungcan.2010.03.011
Cote, M. L., Yoo, W., Wenzlaff, A. S., Prysak, G. M., Santer, S. K., Claeys, G. B., Van Dyke, A. L., Land, S. J., & Schwartz, A. G. (2009). Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis, 30(4), 626–635. https://doi.org/10.1093/carcin/bgp033
Ko, Y., Abel, J., Harth, V., Bröde, P., Antony, C., Donat, S., Fischer, H. P., Ortiz-Pallardo, M. E., Thier, R., Sachinidis, A., Vetter, H., Bolt, H. M., Herberhold, C., & Brüning, T. (2001). Association of CYP1B1 codon 432 mutant allele in head and neck squamous cell cancer is reflected by somatic mutations of p53 in tumor tissue. Cancer research, 61(11), 4398–4404.
Liang, G., Pu, Y., & Yin, L. (2005). Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer letters, 223(2), 265–274. https://doi.org/10.1016/j.canlet.2004.12.042
Liu, F., Luo, L. M., Wei, Y. G., Li, B., Wang, W. T., Wen, T. F., Yang, J. Y., Xu, M. Q., & Yan, L. N. (2015). Polymorphisms of the CYP1B1 gene and hepatocellular carcinoma risk in a Chinese population. Gene, 564(1), 14–20. https://doi.org/10.1016/j.gene.2015.03.035
Lopes, B. A., Emerenciano, M., Gonçalves, B. A., Vieira, T. M., Rossini, A., & Pombo-de-Oliveira, M. S. (2015). Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 Are Associated with Early Age Acute Leukemia. PloS one, 10(5), e0127308. https://doi.org/10.1371/journal.pone.0127308
Nock, N. L., Tang, D., Rundle, A., Neslund-Dudas, C., Savera, A. T., Bock, C. H., Monaghan, K. G., Koprowski, A., Mitrache, N., Yang, J. J., & Rybicki, B. A. (2007). Associations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 16(6), 1236–1245. https://doi.org/10.1158/1055-9965.EPI-06-0736
Sillanpää, P., Heikinheimo, L., Kataja, V., Eskelinen, M., Kosma, V. M., Uusitupa, M., Vainio, H., Metsola, K., & Hirvonen, A. (2007). CYP1A1 and CYP1B1 genetic polymorphisms, smoking and breast cancer risk in a Finnish Caucasian population. Breast cancer research and treatment, 104(3), 287–297. https://doi.org/10.1007/s10549-006-9414-6
Timofeeva, M. N., Kropp, S., Sauter, W., Beckmann, L., Rosenberger, A., Illig, T., Jäger, B., Mittelstrass, K., Dienemann, H., LUCY-Consortium, Bartsch, H., Bickeböller, H., Chang-Claude, J. C., Risch, A., & Wichmann, H. E. (2009). CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences. Carcinogenesis, 30(7), 1161–1169. https://doi.org/10.1093/carcin/bgp102
GPX1 (rs1050450):
Bhatti, P., Stewart, P. A., Hutchinson, A., Rothman, N., Linet, M. S., Inskip, P. D., & Rajaraman, P. (2009). Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 18(6), 1841–1848. https://doi.org/10.1158/1055-9965.EPI-09-0197
Chen, J., Cao, Q., Qin, C., Shao, P., Wu, Y., Wang, M., Zhang, Z., & Yin, C. (2011). GPx-1 polymorphism (rs1050450) contributes to tumor susceptibility: evidence from meta-analysis. Journal of cancer research and clinical oncology, 137(10), 1553–1561. https://doi.org/10.1007/s00432-011-1033-x
Combs, G. F., Jr, Jackson, M. I., Watts, J. C., Johnson, L. K., Zeng, H., Idso, J., Schomburg, L., Hoeg, A., Hoefig, C. S., Chiang, E. C., Waters, D. J., Davis, C. D., & Milner, J. A. (2012). Differential responses to selenomethionine supplementation by sex and genotype in healthy adults. The British journal of nutrition, 107(10), 1514–1525. https://doi.org/10.1017/S0007114511004715
Cominetti, C., de Bortoli, M. C., Purgatto, E., Ong, T. P., Moreno, F. S., Garrido, A. B., Jr, & Cozzolino, S. M. (2011). Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition (Burbank, Los Angeles County, Calif.), 27(9), 891–896. https://doi.org/10.1016/j.nut.2010.09.003
Hong, Z., Tian, C., & Zhang, X. (2013). GPX1 gene Pro200Leu polymorphism, erythrocyte GPX activity, and cancer risk. Molecular biology reports, 40(2), 1801–1812. https://doi.org/10.1007/s11033-012-2234-3
Jablonska, E., Gromadzinska, J., Reszka, E., Wasowicz, W., Sobala, W., Szeszenia-Dabrowska, N., & Boffetta, P. (2009). Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. European journal of nutrition, 48(6), 383–386. https://doi.org/10.1007/s00394-009-0023-0
Karunasinghe, N., Han, D. Y., Zhu, S., Yu, J., Lange, K., Duan, H., Medhora, R., Singh, N., Kan, J., Alzaher, W., Chen, B., Ko, S., Triggs, C. M., & Ferguson, L. R. (2012). Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: relationship to markers of oxidative stress in men from Auckland, New Zealand. Genes & nutrition, 7(2), 179–190. https://doi.org/10.1007/s12263-011-0259-1
Miller, J. C., Thomson, C. D., Williams, S. M., van Havre, N., Wilkins, G. T., Morison, I. M., Ludgate, J. L., & Skeaff, C. M. (2012). Influence of the glutathione peroxidase 1 Pro200Leu polymorphism on the response of glutathione peroxidase activity to selenium supplementation: a randomized controlled trial. The American journal of clinical nutrition, 96(4), 923–931. https://doi.org/10.3945/ajcn.112.043125
Steinbrecher, A., Méplan, C., Hesketh, J., Schomburg, L., Endermann, T., Jansen, E., Akesson, B., Rohrmann, S., & Linseisen, J. (2010). Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 19(11), 2958–2968. https://doi.org/10.1158/1055-9965.EPI-10-0364
Soerensen, M., Christensen, K., Stevnsner, T., & Christiansen, L. (2009). The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mechanisms of ageing and development, 130(5), 308–314. https://doi.org/10.1016/j.mad.2009.01.005
Tang, T. S., Prior, S. L., Li, K. W., Ireland, H. A., Bain, S. C., Hurel, S. J., Cooper, J. A., Humphries, S. E., & Stephens, J. W. (2012). Association between the rs1050450 glutathione peroxidase-1 (C > T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutrition, metabolism, and cardiovascular diseases : NMCD, 22(5), 417–425. https://doi.org/10.1016/j.numecd.2010.08.001
Xiong, Y. M., Mo, X. Y., Zou, X. Z., Song, R. X., Sun, W. Y., Lu, W., Chen, Q., Yu, Y. X., & Zang, W. J. (2010). Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease. Osteoarthritis and cartilage, 18(6), 817–824. https://doi.org/10.1016/j.joca.2010.02.004
GSTT1 (Null-Allel):
Ahluwalia, M., & Kaur, A. (2018). Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environmental science and pollution research international, 25(12), 11981–11986. https://doi.org/10.1007/s11356-018-1459-7
Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132
Ercegovac, M., Jovic, N., Sokic, D., Savic-Radojevic, A., Coric, V., Radic, T., Nikolic, D., Kecmanovic, M., Matic, M., Simic, T., & Pljesa-Ercegovac, M. (2015). GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in progressive myoclonus epilepsy: A Serbian case-control study. Seizure, 32, 30–36. https://doi.org/10.1016/j.seizure.2015.08.010
Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178
Goodrich, J. M., Wang, Y., Gillespie, B., Werner, R., Franzblau, A., & Basu, N. (2011). Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicology and applied pharmacology, 257(2), 301–308. https://doi.org/10.1016/j.taap.2011.09.014
Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652
Sun, B., Song, J., Wang, Y., Jiang, J., An, Z., Li, J., Zhang, Y., Wang, G., Li, H., Alexis, N. E., Jaspers, I., & Wu, W. (2021). Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. Environmental pollution (Barking, Essex : 1987), 285, 117215. https://doi.org/10.1016/j.envpol.2021.117215
Tahir, M., Rehman, M. Y. A., & Malik, R. N. (2021). Heavy metal-associated oxidative stress and glutathione S-transferase polymorphisms among E-waste workers in Pakistan. Environmental geochemistry and health, 43(11), 4441–4458. https://doi.org/10.1007/s10653-021-00926-x
Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8
Yohannes, Y. B., Nakayama, S. M. M., Yabe, J., Toyomaki, H., Kataba, A., Nakata, H., Muzandu, K., Ikenaka, Y., Choongo, K., & Ishizuka, M. (2022). Glutathione S-transferase gene polymorphisms in association with susceptibility to lead toxicity in lead- and cadmium-exposed children near an abandoned lead-zinc mining area in Kabwe, Zambia. Environmental science and pollution research international, 29(5), 6622–6632. https://doi.org/10.1007/s11356-021-16098-1
GSTM1 (Null-Allel):
Aliomrani, M., Sahraian, M. A., Shirkhanloo, H., Sharifzadeh, M., Khoshayand, M. R., & Ghahremani, M. H. (2017). Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(7), 1271–1278. https://doi.org/10.1007/s10072-017-2934-5
Barrón Cuenca, J., Tirado, N., Barral, J., Ali, I., Levi, M., Stenius, U., Berglund, M., & Dreij, K. (2019). Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. The Science of the total environment, 695, 133942. https://doi.org/10.1016/j.scitotenv.2019.133942
de Oliveira, A. Á., de Souza, M. F., Lengert, A.v, de Oliveira, M. T., Camargo, R. B., Braga, G. Ú., Cólus, I. M., Barbosa, F., Jr, & Barcelos, G. R. (2014). Genetic polymorphisms in glutathione (GSH-) related genes affect the plasmatic Hg/whole blood Hg partitioning and the distribution between inorganic and methylmercury levels in plasma collected from a fish-eating population. BioMed research international, 2014, 940952. https://doi.org/10.1155/2014/940952
Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132
Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178
Lee, J. U., Jeong, J. Y., Kim, M. K., Min, S. A., Park, J. S., & Park, C. S. (2022). Association of GSTM1 and GSTT1 Null Genotypes with Toluene Diisocyanate-Induced Asthma. Canadian respiratory journal, 2022, 7977937. https://doi.org/10.1155/2022/7977937
Santillán-Sidón, P., Pérez-Morales, R., Anguiano, G., Ruiz-Baca, E., Osten, J. R., Olivas-Calderón, E., & Vazquez-Boucard, C. (2020). Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. Environmental science and pollution research international, 27(34), 43223–43232. https://doi.org/10.1007/s11356-020-10206-3
Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652
Sirivarasai, J., Wananukul, W., Kaojarern, S., Chanprasertyothin, S., Thongmung, N., Ratanachaiwong, W., Sura, T., & Sritara, P. (2013). Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. BioMed research international, 2013, 474963. https://doi.org/10.1155/2013/474963
Singh, S., Kumar, V., Singh, P., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2012). Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 741(1-2), 101–108. https://doi.org/10.1016/j.mrgentox.2011.11.001
Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8
SOD2 (rs4880):
Funke, S., Risch, A., Nieters, A., Hoffmeister, M., Stegmaier, C., Seiler, C. M., Brenner, H., & Chang-Claude, J. (2009). Genetic Polymorphisms in Genes Related to Oxidative Stress (GSTP1, GSTM1, GSTT1, CAT, MnSOD, MPO, eNOS) and Survival of Rectal Cancer Patients after Radiotherapy. Journal of cancer epidemiology, 2009, 302047. https://doi.org/10.1155/2009/302047
Massy, Z. A., Stenvinkel, P., & Drueke, T. B. (2009). The role of oxidative stress in chronic kidney disease. Seminars in dialysis, 22(4), 405–408. https://doi.org/10.1111/j.1525-139X.2009.00590.x
Lightfoot, T. J., Skibola, C. F., Smith, A. G., Forrest, M. S., Adamson, P. J., Morgan, G. J., Bracci, P. M., Roman, E., Smith, M. T., & Holly, E. A. (2006). Polymorphisms in the oxidative stress genes, superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin’s lymphoma. Haematologica, 91(9), 1222–1227.
Paludo, F. J., Bristot, I. J., Alho, C. S., Gelain, D. P., & Moreira, J. C. (2014). Effects of 47C allele (rs4880) of the SOD2 gene in the production of intracellular reactive species in peripheral blood mononuclear cells with and without lipopolysaccharides induction. Free radical research, 48(2), 190–199. https://doi.org/10.3109/10715762.2013.859385
Pourvali, K., Abbasi, M., & Mottaghi, A. (2016). Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications. Avicenna journal of medical biotechnology, 8(2), 48–56.
Soerensen, M., Christensen, K., Stevnsner, T., & Christiansen, L. (2009). The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mechanisms of ageing and development, 130(5), 308–314. https://doi.org/10.1016/j.mad.2009.01.005
Sutton, A., Imbert, A., Igoudjil, A., Descatoire, V., Cazanave, S., Pessayre, D., & Degoul, F. (2005). The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenetics and genomics, 15(5), 311–319. https://doi.org/10.1097/01213011-200505000-00006
Sutton, A., Khoury, H., Prip-Buus, C., Cepanec, C., Pessayre, D., & Degoul, F. (2003). The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics, 13(3), 145–157. https://doi.org/10.1097/01.fpc.0000054067.64000.8f
Zejnilovic, J., Akev, N., Yilmaz, H., & Isbir, T. (2009). Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer genetics and cytogenetics, 189(1), 1–4. https://doi.org/10.1016/j.cancergencyto.2008.06.017
GSTP1 (rs1695):
Rahbar, M. H., Samms-Vaughan, M., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakspeare-Pellington, S., Loveland, K. A., Beecher, C., & McLaughlin, W. (2021). Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 18(4), 1377. https://doi.org/10.3390/ijerph18041377
Rahbar, M. H., Samms-Vaughan, M., Pitcher, M. R., Bressler, J., Hessabi, M., Loveland, K. A., Christian, M. A., Grove, M. L., Shakespeare-Pellington, S., Beecher, C., McLaughlin, W., & Boerwinkle, E. (2016). Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 13(11), 1095. https://doi.org/10.3390/ijerph13111095
Saad-Hussein, A., Noshy, M., Taha, M., El-Shorbagy, H., Shahy, E., & Abdel-Shafy, E. A. (2017). GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutation research. Genetic toxicology and environmental mutagenesis, 819, 20–25. https://doi.org/10.1016/j.mrgentox.2017.05.005
Singh, S., Kumar, V., Singh, P., Thakur, S., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2011). Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 725(1-2), 36–42. https://doi.org/10.1016/j.mrgentox.2011.06.006
Valeeva, E. T., Mukhammadiyeva, G. F., & Bakirov, A. B. (2020). Polymorphism of Glutathione S-transferase Genes and the Risk of Toxic Liver Damage in Petrochemical Workers. The international journal of occupational and environmental medicine, 11(1), 53–58. https://doi.org/10.15171/ijoem.2020.1771
Wong, R. H., Chang, S. Y., Ho, S. W., Huang, P. L., Liu, Y. J., Chen, Y. C., Yeh, Y. H., & Lee, H. S. (2008). Polymorphisms in metabolic GSTP1 and DNA-repair XRCC1 genes with an increased risk of DNA damage in pesticide-exposed fruit growers. Mutation research, 654(2), 168–175. https://doi.org/10.1016/j.mrgentox.2008.06.005
MTRR (rs1801394):
Cai, B., Zhang, T., Zhong, R., Zou, L., Zhu, B., Chen, W., Shen, N., Ke, J., Lou, J., Wang, Z., Sun, Y., Liu, L., & Song, R. (2014). Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: an integrated meta-analysis. PloS one, 9(3), e89609. https://doi.org/10.1371/journal.pone.0089609
García-Minguillán, C. J., Fernandez-Ballart, J. D., Ceruelo, S., Ríos, L., Bueno, O., Berrocal-Zaragoza, M. I., Molloy, A. M., Ueland, P. M., Meyer, K., & Murphy, M. M. (2014). Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes & nutrition, 9(6), 435. https://doi.org/10.1007/s12263-014-0435-1
Olteanu, H., Munson, T., & Banerjee, R. (2002). Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry, 41(45), 13378–13385. https://doi.org/10.1021/bi020536s
van Beynum, I. M., Kouwenberg, M., Kapusta, L., den Heijer, M., van der Linden, I. J., Daniels, O., & Blom, H. J. (2006). MTRR 66A>G polymorphism in relation to congenital heart defects. Clinical chemistry and laboratory medicine, 44(11), 1317–1323. https://doi.org/10.1515/CCLM.2006.254
Yu, D., Yang, L., Shen, S., Fan, C., Zhang, W., & Mo, X. (2014). Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies. Pediatric cardiology, 35(7), 1091–1098. https://doi.org/10.1007/s00246-014-0948-9
Zeng, W., Liu, L., Tong, Y., Liu, H. M., Dai, L., & Mao, M. (2011). A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genetics and molecular research : GMR, 10(4), 2597–2605. https://doi.org/10.4238/2011.October.25.7
MTHFR (rs1801133):
Al-Batayneh, K. M., Zoubi, M. S. A., Shehab, M., Al-Trad, B., Bodoor, K., Khateeb, W. A., Aljabali, A. A. A., Hamad, M. A., & Eaton, G. (2018). Association between MTHFR 677C>T Polymorphism and Vitamin B12 Deficiency: A Case-control Study. Journal of medical biochemistry, 37(2), 141–147. https://doi.org/10.1515/jomb-2017-0051
Biselli, P. M., Sanches de Alvarenga, M. P., Abbud-Filho, M., Ferreira-Baptista, M. A., Galbiatti, A. L., Goto, M. T., Cardoso, M. A., Eberlin, M. N., Haddad, R., Goloni-Bertollo, E. M., & Pavarino-Bertelli, E. C. (2007). Effect of folate, vitamin B6, and vitamin B12 intake and MTHFR C677T polymorphism on homocysteine concentrations of renal transplant recipients. Transplantation proceedings, 39(10), 3163–3165. https://doi.org/10.1016/j.transproceed.2007.08.098
Bouzidi, N., Hassine, M., Fodha, H., Ben Messaoud, M., Maatouk, F., Gamra, H., & Ferchichi, S. (2020). Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Scientific reports, 10(1), 10064. https://doi.org/10.1038/s41598-020-66937-3
Cheng, Y., Liu, S., Chen, D., Yang, Y., Liang, Q., Huo, Y., Zhou, Z., Zhang, N., Wang, Z., Liu, L., Song, Y., Liu, X., Duan, Y., Liang, X., Hou, B., Wang, B., Tang, G., Qin, X., & Yan, F. (2022). Association between serum 5-methyltetrahydrofolate and homocysteine in Chinese hypertensive participants with different MTHFR C677T polymorphisms: a cross-sectional study. Nutrition journal, 21(1), 29. https://doi.org/10.1186/s12937-022-00786-w
Chmurzynska, A., Seremak-Mrozikiewicz, A., Malinowska, A. M., Różycka, A., Radziejewska, A., KurzawiŃska, G., Barlik, M., Wolski, H., & Drews, K. (2020). Associations between folate and choline intake, homocysteine metabolism, and genetic polymorphism of MTHFR, BHMT and PEMT in healthy pregnant Polish women. Nutrition & dietetics: the journal of the Dietitians Association of Australia, 77(3), 368–372. https://doi.org/10.1111/1747-0080.12549
García-Minguillán, C. J., Fernandez-Ballart, J. D., Ceruelo, S., Ríos, L., Bueno, O., Berrocal-Zaragoza, M. I., Molloy, A. M., Ueland, P. M., Meyer, K., & Murphy, M. M. (2014). Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes & nutrition, 9(6), 435. https://doi.org/10.1007/s12263-014-0435-1
Klerk, M., Verhoef, P., Clarke, R., Blom, H. J., Kok, F. J., Schouten, E. G., & MTHFR Studies Collaboration Group (2002). MTHFR 677C–>T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA, 288(16), 2023–2031. https://doi.org/10.1001/jama.288.16.2023
Qin, X., Spence, J. D., Li, J., Zhang, Y., Li, Y., Sun, N., Liang, M., Song, Y., Zhang, Y., Wang, B., Cheng, X., Zhao, L., Wang, X., Xu, X., & Huo, Y. (2020). Interaction of serum vitamin B12 and folate with MTHFR genotypes on risk of ischemic stroke. Neurology, 94(11), e1126–e1136. https://doi.org/10.1212/WNL.0000000000008932
Shivkar, R. R., Gawade, G. C., Padwal, M. K., Diwan, A. G., Mahajan, S. A., & Kadam, C. Y. (2022). Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) Polymorphisms with Serum Homocysteine, Folate and Vitamin B12 in Patients with Young Coronary Artery Disease. Indian journal of clinical biochemistry : IJCB, 37(2), 224–231. https://doi.org/10.1007/s12291-021-00982-1
Steluti, J., Carvalho, A. M., Carioca, A. A. F., Miranda, A., Gattás, G. J. F., Fisberg, R. M., & Marchioni, D. M. (2017). Genetic Variants Involved in One-Carbon Metabolism: Polymorphism Frequencies and Differences in Homocysteine Concentrations in the Folic Acid Fortification Era. Nutrients, 9(6), 539. https://doi.org/10.3390/nu9060539
Zhang, J., Zeng, C., Huang, X., Liao, Q., Chen, H., Liu, F., Sun, D., Luo, S., Xiao, Y., Xu, W., Zeng, D., Song, M., & Tian, F. (2022). Association of homocysteine and polymorphism of methylenetetrahydrofolate reductase with early-onset post stroke depression. Frontiers in nutrition, 9, 1078281. https://doi.org/10.3389/fnut.2022.1078281
APOB (rs5742904):
Angotti, E., Mele, E., Costanzo, F., & Avvedimento, E. V. (1994). A polymorphism (G–>A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. The Journal of biological chemistry, 269(26), 17371–17374.
Juo, S. H., Wyszynski, D. F., Beaty, T. H., Huang, H. Y., & Bailey-Wilson, J. E. (1999). Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. American journal of medical genetics, 82(3), 235–241.
Mata, P., Lopez-Miranda, J., Pocovi, M., Alonso, R., Lahoz, C., Marin, C., Garces, C., Cenarro, A., Perez-Jimenez, F., de Oya, M., & Ordovas, J. M. (1998). Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis, 137(2), 367–376. https://doi.org/10.1016/s0021-9150(97)00265-7
Miles, R. R., Perry, W., Haas, J. V., Mosior, M. K., N’Cho, M., Wang, J. W., Yu, P., Calley, J., Yue, Y., Carter, Q., Han, B., Foxworthy, P., Kowala, M. C., Ryan, T. P., Solenberg, P. J., & Michael, L. F. (2013). Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. The Journal of biological chemistry, 288(9), 6386–6396. https://doi.org/10.1074/jbc.M112.410092
Ordovas, J. M., Corella, D., Cupples, L. A., Demissie, S., Kelleher, A., Coltell, O., Wilson, P. W., Schaefer, E. J., & Tucker, K. (2002). Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. The American journal of clinical nutrition, 75(1), 38–46. https://doi.org/10.1093/ajcn/75.1.38
Ordovas J. M. (2002). Gene-diet interaction and plasma lipid responses to dietary intervention. Biochemical Society transactions, 30(2), 68–73.
Ruaño, G., Seip, R. L., Windemuth, A., Zöllner, S., Tsongalis, G. J., Ordovas, J., Otvos, J., Bilbie, C., Miles, M., Zoeller, R., Visich, P., Gordon, P., Angelopoulos, T. J., Pescatello, L., Moyna, N., & Thompson, P. D. (2006). Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis, 185(1), 65–69. https://doi.org/10.1016/j.atherosclerosis.2005.05.029
Rudkowska, I., Dewailly, E., Hegele, R. A., Boiteau, V., Dubé-Linteau, A., Abdous, B., Giguere, Y., Chateau-Degat, M. L., & Vohl, M. C. (2013). Gene-diet interactions on plasma lipid levels in the Inuit population. The British journal of nutrition, 109(5), 953–961. https://doi.org/10.1017/S0007114512002231
SREBP2 (rs2228314):
Fan, Y. M., Karhunen, P. J., Levula, M., Ilveskoski, E., Mikkelsson, J., Kajander, O. A., Järvinen, O., Oksala, N., Thusberg, J., Vihinen, M., Salenius, J. P., Kytömäki, L., Soini, J. T., Laaksonen, R., & Lehtimäki, T. (2008). Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Thrombosis journal, 6, 17. https://doi.org/10.1186/1477-9560-6-17
Wang, Y., Tong, J., Chang, B., Wang, B. F., Zhang, D., & Wang, B. Y. (2014). Relationship of SREBP-2 rs2228314 G>C polymorphism with nonalcoholic fatty liver disease in a Han Chinese population. Genetic testing and molecular biomarkers, 18(9), 653–657. https://doi.org/10.1089/gtmb.2014.0116
APOA5 (rs662799):
Aberle, J., Evans, D., Beil, F. U., & Seedorf, U. (2005). A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clinical genetics, 68(2), 152–154. https://doi.org/10.1111/j.1399-0004.2005.00463.x
Aouizerat, B. E., Kulkarni, M., Heilbron, D., Drown, D., Raskin, S., Pullinger, C. R., Malloy, M. J., & Kane, J. P. (2003). Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. Journal of lipid research, 44(6), 1167–1173. https://doi.org/10.1194/jlr.M200480-JLR200
Dorfmeister, B., Cooper, J. A., Stephens, J. W., Ireland, H., Hurel, S. J., Humphries, S. E., & Talmud, P. J. (2007). The effect of APOA5 and APOC3 variants on lipid parameters in European Whites, Indian Asians and Afro-Caribbeans with type 2 diabetes. Biochimica et biophysica acta, 1772(3), 355–363. https://doi.org/10.1016/j.bbadis.2006.11.008
NQO1 (rs1800566):
Fischer, A., Schmelzer, C., Rimbach, G., Niklowitz, P., Menke, T., & Döring, F. (2011). Association between genetic variants in the Coenzyme Q10 metabolism and Coenzyme Q10 status in humans. BMC research notes, 4, 245. https://doi.org/10.1186/1756-0500-4-245
Freriksen, J. J., Salomon, J., Roelofs, H. M., Te Morsche, R. H., van der Stappen, J. W., Dura, P., Witteman, B. J., Lacko, M., & Peters, W. H. (2014). Genetic polymorphism 609C>T in NAD(P)H:quinone oxidoreductase 1 enhances the risk of proximal colon cancer. Journal of human genetics, 59(7), 381–386. https://doi.org/10.1038/jhg.2014.38
Traver, R. D., Siegel, D., Beall, H. D., Phillips, R. M., Gibson, N. W., Franklin, W. A., & Ross, D. (1997). Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). British journal of cancer, 75(1), 69–75. https://doi.org/10.1038/bjc.1997.11
MTHFR:
Colson, N. J., Naug, H. L., Nikbakht, E., Zhang, P., & McCormack, J. (2017). The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies. European journal of nutrition, 56(1), 247–260. https://doi.org/10.1007/s00394-015-1076-x
Födinger, M., Buchmayer, H., Heinz, G., Papagiannopoulos, M., Kletzmayr, J., Rasoul-Rockenschaub, S., Hörl, W. H., & Sunder-Plassmann, G. (2000). Effect of MTHFR 1298A–>C and MTHFR 677C–>T genotypes on total homocysteine, folate, and vitamin B(12) plasma concentrations in kdiney graft recipients. Journal of the American Society of Nephrology : JASN, 11(10), 1918–1925. https://doi.org/10.1681/ASN.V11101918
van der Put, N. M., Gabreëls, F., Stevens, E. M., Smeitink, J. A., Trijbels, F. J., Eskes, T. K., van den Heuvel, L. P., & Blom, H. J. (1998). A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects?. American journal of human genetics, 62(5), 1044–1051. https://doi.org/10.1086/301825
CYP1A2 (rs762551):
Bågeman, E., Ingvar, C., Rose, C., & Jernström, H. (2008). Coffee consumption and CYP1A2*1F genotype modify age at breast cancer diagnosis and estrogen receptor status. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 17(4), 895–901. https://doi.org/10.1158/1055-9965.EPI-07-0555
Sachse, C., Brockmöller, J., Bauer, S., & Roots, I. (1999). Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. British journal of clinical pharmacology, 47(4), 445–449. https://doi.org/10.1046/j.1365-2125.1999.00898.x
Analysierte Risikofaktoren
AhRR (rs2292596)
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
Tsuchiya, M., Katoh, T., Motoyama, H., Sasaki, H., Tsugane, S., & Ikenoue, T. (2005). Analysis of the AhR, ARNT, and AhRR gene polymorphisms: genetic contribution to endometriosis susceptibility and severity. Fertility and sterility, 84(2), 454–458. https://doi.org/10.1016/j.fertnstert.2005.01.130
Wu, C. H., Guo, C. Y., Yang, J. G., Tsai, H. D., Chang, Y. J., Tsai, P. C., Hsu, C. C., & Kuo, P. L. (2012). Polymorphisms of dioxin receptor complex components and detoxification-related genes jointly confer susceptibility to advanced-stage endometriosis in the taiwanese han population. American journal of reproductive immunology (New York, N.Y. : 1989), 67(2), 160–168. https://doi.org/10.1111/j.1600-0897.2011.01077.x
COMT (rs4680)
Juo, S. H., Wang, T. N., Lee, J. N., Wu, M. T., Long, C. Y., & Tsai, E. M. (2006). CYP17, CYP1A1 and COMT polymorphisms and the risk of adenomyosis and endometriosis in Taiwanese women. Human reproduction (Oxford, England), 21(6), 1498–1502. https://doi.org/10.1093/humrep/del033
Li, Y. W., Wang, C. X., Chen, J. S., Chen, L., Zhang, X. Q., Hu, Y., Niu, X. B., Pei, D. X., Liu, X. W., & Bi, Y. Y. (2018). Catechol-O-methyltransferase 158G/A polymorphism and endometriosis/adenomyosis susceptibility: A meta-analysis in the Chinese population. Journal of cancer research and therapeutics, 14(Supplement), S980–S984. https://doi.org/10.4103/0973-1482.188439
Tong, X., Li, Z., Wu, Y., Fu, X., Zhang, Y., & Fan, H. (2014). COMT 158G/A and CYP1B1 432C/G polymorphisms increase the risk of endometriosis and adenomyosis: a meta-analysis. European journal of obstetrics, gynecology, and reproductive biology, 179, 17–21. https://doi.org/10.1016/j.ejogrb.2014.04.039
Zhai, J., Jiang, L., Wen, A., Jia, J., Zhu, L., & Fan, B. (2019). Analysis of the relationship between COMT polymorphisms and endometriosis susceptibility. Medicine, 98(1), e13933. https://doi.org/10.1097/MD.0000000000013933
CYP1A1 (rs1048943)
Fan, W., Huang, Z., Xiao, Z., Li, S., & Ma, Q. (2016). The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. Journal of assisted reproduction and genetics, 33(10), 1373–1383. https://doi.org/10.1007/s10815-016-0783-4
CYP19A1 (rs700518)
Wang, L., Lu, X., Wang, D., Qu, W., Li, W., Xu, X., Huang, Q., Han, X., & Lv, J. (2014). CYP19 gene variant confers susceptibility to endometriosis-associated infertility in Chinese women. Experimental & molecular medicine, 46(6), e103. https://doi.org/10.1038/emm.2014.31
Vietri, M. T., Cioffi, M., Sessa, M., Simeone, S., Bontempo, P., Trabucco, E., Ardovino, M., Colacurci, N., Molinari, A. M., & Cobellis, L. (2009). CYP17 and CYP19 gene polymorphisms in women affected with endometriosis. Fertility and sterility, 92(5), 1532–1535. https://doi.org/10.1016/j.fertnstert.2008.07.1786
CYP19A1 (rs700519)
Smolarz, B., & Romanowicz, H. (2021). Association between single nucleotide polymorphism of the CYP19A1 and ESR2 genes and endometriosis. Archives of gynecology and obstetrics, 304(2), 439–445. https://doi.org/10.1007/s00404-021-06051-5
Tuo, Y., He, J. Y., Yan, W. J., & Yang, J. (2016). Association between CYP19A1, GSTM1, GSTT1, and GSTP1 genetic polymorphisms and the development of endometriosis in a Chinese population. Genetics and molecular research : GMR, 15(4), 10.4238/gmr15048837. https://doi.org/10.4238/gmr15048837
CYP19A1 (rs1870049)
Trabert, B., Schwartz, S. M., Peters, U., De Roos, A. J., Chen, C., Scholes, D., & Holt, V. L. (2011). Genetic variation in the sex hormone metabolic pathway and endometriosis risk: an evaluation of candidate genes. Fertility and sterility, 96(6), 1401–1406.e3. https://doi.org/10.1016/j.fertnstert.2011.09.004
CYP19A1 (rs936307)
Trabert, B., Schwartz, S. M., Peters, U., De Roos, A. J., Chen, C., Scholes, D., & Holt, V. L. (2011). Genetic variation in the sex hormone metabolic pathway and endometriosis risk: an evaluation of candidate genes. Fertility and sterility, 96(6), 1401–1406.e3. https://doi.org/10.1016/j.fertnstert.2011.09.004
CYP2C19 (rs4244285)
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
Cardoso, J. V., Abrão, M. S., Berardo, P. T., Ferrari, R., Nasciutti, L. E., Machado, D. E., & Perini, J. A. (2017). Role of cytochrome P450 2C19 polymorphisms and body mass index in endometriosis: A case-control study. European journal of obstetrics, gynecology, and reproductive biology, 219, 119–123. https://doi.org/10.1016/j.ejogrb.2017.10.027
J. N., Nyholt, D. R., Krause, L., Zhao, Z. Z., Chapman, B., Zhang, C., Medland, S., Martin, N. G., Kennedy, S., Treloar, S., Zondervan, K., & Montgomery, G. W. (2014). Common variants in the CYP2C19 gene are associated with susceptibility to endometriosis. Fertility and sterility, 102(2), 496–502.e5. https://doi.org/10.1016/j.fertnstert.2014.04.015
Perini, J. A., Machado, D. E., Cardoso, J. V., Fernandes, V. C., Struchiner, C. J., & Suarez-Kurtz, G. (2023). CYP2C19 metabolic estrogen phenotypes and endometriosis risk in Brazilian women. Clinics (Sao Paulo, Brazil), 78, 100176. https://doi.org/10.1016/j.clinsp.2023.100176
Bozdag, G., Alp, A., Saribas, Z., Tuncer, S., Aksu, T., & Gurgan, T. (2010). CYP17 and CYP2C19 gene polymorphisms in patients with endometriosis. Reproductive biomedicine online, 20(2), 286–290. https://doi.org/10.1016/j.rbmo.2009.11.007
ESR1 (rs2234693)
Govindan, S., Shaik, N. A., Vedicherla, B., Kodati, V., Rao, K. P., & Hasan, Q. (2009). Estrogen receptor-alpha gene (T/C) Pvu II polymorphism in endometriosis and uterine fibroids. Disease markers, 26(4), 149–154. https://doi.org/10.3233/DMA-2009-0625
Li, Y., Liu, F., Tan, S. Q., Wang, Y., & Li, S. W. (2012). Estrogen receptor-alpha gene PvuII (T/C) and XbaI (A/G) polymorphisms and endometriosis risk: a meta-analysis. Gene, 508(1), 41–48. https://doi.org/10.1016/j.gene.2012.07.049
Hsieh, Y. Y., Wang, Y. K., Chang, C. C., & Lin, C. S. (2007). Estrogen receptor alpha-351 XbaI*G and -397 PvuII*C-related genotypes and alleles are associated with higher susceptibilities of endometriosis and leiomyoma. Molecular human reproduction, 13(2), 117–122. https://doi.org/10.1093/molehr/gal099
ESR1 (rs9340799)
Govindan, S., Shaik, N. A., Vedicherla, B., Kodati, V., Rao, K. P., & Hasan, Q. (2009). Estrogen receptor-alpha gene (T/C) Pvu II polymorphism in endometriosis and uterine fibroids. Disease markers, 26(4), 149–154. https://doi.org/10.3233/DMA-2009-0625
Paskulin, D. D., Cunha-Filho, J. S., Paskulin, L. D., Souza, C. A., & Ashton-Prolla, P. (2013). ESR1 rs9340799 is associated with endometriosis-related infertility and in vitro fertilization failure. Disease markers, 35(6), 907–913. https://doi.org/10.1155/2013/796290
Li, Y., Liu, F., Tan, S. Q., Wang, Y., & Li, S. W. (2012). Estrogen receptor-alpha gene PvuII (T/C) and XbaI (A/G) polymorphisms and endometriosis risk: a meta-analysis. Gene, 508(1), 41–48. https://doi.org/10.1016/j.gene.2012.07.049
Eldafira, E., Prasasty, V. D., Abinawanto, A., Syahfirdi, L., & Pujianto, D. A. (2021). Polymorphisms of Estrogen Receptor-α and Estrogen Receptor-β Genes and its Expression in Endometriosis. Turkish journal of pharmaceutical sciences, 18(1), 91–95. https://doi.org/10.4274/tjps.galenos.2019.94914
GSTM1
Chen, X. P., Xu, D. F., Xu, W. H., Yao, J., & Fu, S. M. (2015). Glutathione-S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis in Chinese populations. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 31(11), 840–845. https://doi.org/10.3109/09513590.2015.1080681
Irimia, T., Pușcașiu, L., Mitranovici, M. I., Crișan, A., Budianu, M. A., Bănescu, C., Chiorean, D. M., Niculescu, R., Sabău, A. H., Cocuz, I. G., & Cotoi, O. S. (2022). Oxidative-Stress Related Gene Polymorphism in Endometriosis-Associated Infertility. Medicina (Kaunas, Lithuania), 58(8), 1105. https://doi.org/10.3390/medicina58081105
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
Wu, C. H., Guo, C. Y., Yang, J. G., Tsai, H. D., Chang, Y. J., Tsai, P. C., Hsu, C. C., & Kuo, P. L. (2012). Polymorphisms of dioxin receptor complex components and detoxification-related genes jointly confer susceptibility to advanced-stage endometriosis in the taiwanese han population. American journal of reproductive immunology (New York, N.Y. : 1989), 67(2), 160–168. https://doi.org/10.1111/j.1600-0897.2011.01077.x
Zhu, H., Bao, J., Liu, S., Chen, Q., & Shen, H. (2014). Null genotypes of GSTM1 and GSTT1 and endometriosis risk: a meta-analysis of 25 case-control studies. PloS one, 9(9), e106761. https://doi.org/10.1371/journal.pone.0106761
GSTT1
Chen, X. P., Xu, D. F., Xu, W. H., Yao, J., & Fu, S. M. (2015). Glutathione-S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis in Chinese populations. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 31(11), 840–845. https://doi.org/10.3109/09513590.2015.1080681
Zhu, H., Bao, J., Liu, S., Chen, Q., & Shen, H. (2014). Null genotypes of GSTM1 and GSTT1 and endometriosis risk: a meta-analysis of 25 case-control studies. PloS one, 9(9), e106761. https://doi.org/10.1371/journal.pone.0106761
HSD17B1 (rs605059)
Hu, X., Zhou, Y., Feng, Q., Wang, R., Su, L., Long, J., & Wei, B. (2012). Association of endometriosis risk and genetic polymorphisms involving biosynthesis of sex steroids and their receptors: an updating meta-analysis. European journal of obstetrics, gynecology, and reproductive biology, 164(1), 1–9. https://doi.org/10.1016/j.ejogrb.2012.05.008
Lamp, M., Peters, M., Reinmaa, E., Haller-Kikkatalo, K., Kaart, T., Kadastik, U., Karro, H., Metspalu, A., & Salumets, A. (2011). Polymorphisms in ESR1, ESR2 and HSD17B1 genes are associated with fertility status in endometriosis. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 27(6), 425–433. https://doi.org/10.3109/09513590.2010.495434
Osiński, M., Mostowska, A., Wirstlein, P., Skrzypczak, J., Jagodziński, P. P., & Szczepańska, M. (2017). Involvement of 17β-hydroxysteroid dehydrogenase type gene 1 937 A>G polymorphism in infertility in Polish Caucasian women with endometriosis. Journal of assisted reproduction and genetics, 34(6), 789–794. https://doi.org/10.1007/s10815-017-0911-9
Tsuchiya, M., Nakao, H., Katoh, T., Sasaki, H., Hiroshima, M., Tanaka, T., Matsunaga, T., Hanaoka, T., Tsugane, S., & Ikenoue, T. (2005). Association between endometriosis and genetic polymorphisms of the estradiol-synthesizing enzyme genes HSD17B1 and CYP19. Human reproduction (Oxford, England), 20(4), 974–978. https://doi.org/10.1093/humrep/deh726
ICAM1 (rs1799969)
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
Pabalan, N., Jarjanazi, H., Christofolini, D. M., Bianco, B., & Barbosa, C. P. (2017). Association of the protein tyrosine phosphatase non-receptor 22 polymorphism (PTPN22) with endometriosis: a meta-analysis. Einstein (Sao Paulo, Brazil), 15(1), 105–111. https://doi.org/10.1590/S1679-45082017RW3827
IL-16 (rs11556218)
Babah, O. A., Ojewunmi, O. O., Onwuamah, C. K., Udenze, I. C., Osuntoki, A. A., & Afolabi, B. B. (2023). Serum concentrations of IL-16 and its genetic polymorphism rs4778889 affect the susceptibility and severity of endometriosis in Nigerian women. BMC women’s health, 23(1), 253. https://doi.org/10.1186/s12905-023-02362-8
Gan, X. L., Lin, Y. H., Zhang, Y., Yu, T. H., & Hu, L. N. (2010). Association of an interleukin-16 gene polymorphism with the risk and pain phenotype of endometriosis. DNA and cell biology, 29(11), 663–667. https://doi.org/10.1089/dna.2010.1049
Matalliotakis, M., Zervou, M. I., Eliopoulos, E., Matalliotaki, C., Rahmioglu, N., Kalogiannidis, I., Zondervan, K., Spandidos, D. A., Matalliotakis, I., & Goulielmos, G. N. (2018). The role of IL 16 gene polymorphisms in endometriosis. International journal of molecular medicine, 41(3), 1469–1476. https://doi.org/10.3892/ijmm.2018.3368
PGR (rs1042838)
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
Wieser, F., Schneeberger, C., Tong, D., Tempfer, C., Huber, J. C., & Wenzl, R. (2002). PROGINS receptor gene polymorphism is associated with endometriosis. Fertility and sterility, 77(2), 309–312. https://doi.org/10.1016/s0015-0282(01)02984-3
De Carvalho, C. V., Nogueira-De-Souza, N. C., Costa, A. M., Baracat, E. C., Girão, M. J., D’Amora, P., Schor, E., & da Silva, I. D. (2007). Genetic polymorphisms of cytochrome P450cl7alpha (CYP17) and progesterone receptor genes (PROGINS) in the assessment of endometriosis risk. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 23(1), 29–33. https://doi.org/10.1080/09513590601024707
PPARG (rs1801282)
Hwang, K. R., Choi, Y. M., Kim, J. M., Lee, G. H., Kim, J. J., Chae, S. J., & Moon, S. Y. (2010). Association of peroxisome proliferator-activated receptor-gamma 2 Pro12Ala polymorphism with advanced-stage endometriosis. American journal of reproductive immunology (New York, N.Y. : 1989), 64(5), 333–338. https://doi.org/10.1111/j.1600-0897.2010.00882.x
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
TP53 (rs1042522)
Feng, Y., Wu, Y. Y., Li, L., Luo, Z. J., Lin, Z., Zhou, Y. H., Yi, T., Lin, X. J., Zhao, Q. Y., & Zhao, X. (2015). The codon 72 polymorphism of the TP53 gene and endometriosis risk: a meta-analysis. Reproductive biomedicine online, 31(3), 320–326. https://doi.org/10.10google maps16/j.rbmo.2015.05.017
Gallegos-Arreola, M. P., Figuera-Villanueva, L. E., Puebla-Pérez, A. M., Montoya-Fuentes, H., Suarez-Rincon, A. E., & Zúñiga-González, G. M. (2012). Association of TP53 gene codon 72 polymorphism with endometriosis in Mexican women. Genetics and molecular research : GMR, 11(2), 1401–1408. https://doi.org/10.4238/2012.May.15.10
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
WNT4 (rs2235529)
Mafra, F., Catto, M., Bianco, B., Barbosa, C. P., & Christofolini, D. (2015). Association of WNT4 polymorphisms with endometriosis in infertile patients. Journal of assisted reproduction and genetics, 32(9), 1359–1364. https://doi.org/10.1007/s10815-015-0523-1
Méar, L., Herr, M., Fauconnier, A., Pineau, C., & Vialard, F. (2020). Polymorphisms and endometriosis: a systematic review and meta-analyses. Human reproduction update, 26(1), 73–102. https://doi.org/10.1093/humupd/dmz034
Wu, Z., Yuan, M., Li, Y., Fu, F., Ma, W., Li, H., Wang, W., & Wang, S. (2015). Analysis of WNT4 polymorphism in Chinese Han women with endometriosis. Reproductive biomedicine online, 30(4), 415–420. https://doi.org/10.1016/j.rbmo.2014.12.010
XRCC1 (rs25487)
Bau, D. T., Hsieh, Y. Y., Wan, L., Wang, R. F., Liao, C. C., Lee, C. C., Lin, C. C., Tsai, C. H., & Tsai, F. J. (2007). Polymorphism of XRCC1 codon arg 399 Gln is associated with higher susceptibility to endometriosis. The Chinese journal of physiology, 50(6), 326–329.
Hsieh, Y. Y., Chang, C. C., Chen, S. Y., Chen, C. P., Lin, W. H., & Tsai, F. J. (2012). XRCC1 399 Arg-related genotype and allele, but not XRCC1 His107Arg, XRCC1 Trp194Arg, KCNQ2, AT1R, and hOGG1 polymorphisms, are associated with higher susceptibility of endometriosis. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 28(4), 305–309. https://doi.org/10.3109/09513590.2011.631624
Juo, S. H., Wang, T. N., Lee, J. N., Wu, M. T., Long, C. Y., & Tsai, E. M. (2006). CYP17, CYP1A1 and COMT polymorphisms and the risk of adenomyosis and endometriosis in Taiwanese women. Human reproduction (Oxford, England), 21(6), 1498–1502. https://doi.org/10.1093/humrep/del033
ESR1 (rs2234693)
He, M., Shu, J., Huang, X., & Tang, H. (2015). Association between estrogen receptora gene (ESR1) PvuII (T/C) and XbaI (A/G) polymorphisms and premature ovarian failure risk: evidence from a meta-analysis. Journal of assisted reproduction and genetics, 32(2), 297–304. https://doi.org/10.1007/s10815-014-0393-y
Yang, J. J., Cho, L. Y., Lim, Y. J., Ko, K. P., Lee, K. S., Kim, H., Yim, S. V., Chang, S. H., & Park, S. K. (2010). Estrogen receptor-1 genetic polymorphisms for the risk of premature ovarian failure and early menopause. Journal of women’s health (2002), 19(2), 297–304. https://doi.org/10.1089/jwh.2008.1317
Yoon, S. H., Choi, Y. M., Hong, M. A., Lee, G. H., Kim, J. J., Im, H. J., Min, E. G., Kang, B. M., Yoon, B. K., & Moon, S. Y. (2010). Estrogen receptor {alpha} gene polymorphisms in patients with idiopathic premature ovarian failure. Human reproduction (Oxford, England), 25(1), 283–287. https://doi.org/10.1093/humrep/dep375
FSHR (rs1394205)
Liu, H., Guo, T., Gong, Z., Yu, Y., Zhang, Y., Zhao, S., & Qin, Y. (2019). Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Molecular and cellular endocrinology, 492, 110446. https://doi.org/10.1016/j.mce.2019.05.005
INHA (rs12720062)
Pu, D., Xing, Y., Gao, Y., Gu, L., & Wu, J. (2014). Gene variation and premature ovarian failure: a meta-analysis. European journal of obstetrics, gynecology, and reproductive biology, 182, 226–237. https://doi.org/10.1016/j.ejogrb.2014.09.036
Zintzaras E. (2009). Inhibin alpha gene and susceptibility to premature ovarian failure: a data synthesis. Molecular human reproduction, 15(9), 551–555. https://doi.org/10.1093/molehr/gap047
MCM8 (rs58487183)
Desai, S., Wood-Trageser, M., Matic, J., Chipkin, J., Jiang, H., Bachelot, A., Dulon, J., Sala, C., Barbieri, C., Cocca, M., Toniolo, D., Touraine, P., Witchel, S., & Rajkovic, A. (2017). MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. The Journal of clinical endocrinology and metabolism, 102(2), 576–582. https://doi.org/10.1210/jc.2016-2565
MCM8 (rs16991615)
Mirinezhad, M. R., Khosroabadi, N., Rahpeyma, M., Khayami, R., Hashemi, S. R., Ghazizadeh, H., Ferns, G. A., Pasdar, A., Ghayour-Mobarhan, M., & Hamzehloei, T. (2021). Genetic Determinants of Premature Menopause in A Mashhad Population Cohort. International journal of fertility & sterility, 15(1), 26–33. https://doi.org/ 10.22074/ijfs.2020.134688
Murray, A., Bennett, C. E., Perry, J. R., Weedon, M. N., Jacobs, P. A., Morris, D. H., Orr, N., Schoemaker, M. J., Jones, M., Ashworth, A., Swerdlow, A. J., & ReproGen Consortium (2011). Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study. Human molecular genetics, 20(1), 186–192. https://doi.org/10.1093/hmg/ddq417
TLK1 (rs10183486)
Murray, A., Bennett, C. E., Perry, J. R., Weedon, M. N., Jacobs, P. A., Morris, D. H., Orr, N., Schoemaker, M. J., Jones, M., Ashworth, A., Swerdlow, A. J., & ReproGen Consortium (2011). Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study. Human molecular genetics, 20(1), 186–192. https://doi.org/10.1093/hmg/ddq417
Perry, J. R., Corre, T., Esko, T., Chasman, D. I., Fischer, K., Franceschini, N., He, C., Kutalik, Z., Mangino, M., Rose, L. M., Vernon Smith, A., Stolk, L., Sulem, P., Weedon, M. N., Zhuang, W. V., Arnold, A., Ashworth, A., Bergmann, S., Buring, J. E., Burri, A., … Murray, A. (2013). A genome-wide association study of early menopause and the combined impact of identified variants. Human molecular genetics, 22(7), 1465–1472. https://doi.org/10.1093/hmg/dds551
C9orf3 (rs3802457)
Xu, Y., Li, Z., Ai, F., Chen, J., Xing, Q., Zhou, P., Wei, Z., Shi, Y., He, X. J., & Cao, Y. (2015). Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PloS one, 10(10), e0140695. https://doi.org/10.1371/journal.pone.0140695
Zhao, S., Tian, Y., Gao, X., Zhang, X., Liu, H., You, L., Cao, Y., Su, S., Chan, W. Y., Sun, Y., Zhao, H., & Chen, Z. J. (2015). Family-based analysis of eight susceptibility loci in polycystic ovary syndrome. Scientific reports, 5, 12619. https://doi.org/10.1038/srep12619
Louwers, Y. V., Stolk, L., Uitterlinden, A. G., & Laven, J. S. (2013). Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. The Journal of clinical endocrinology and metabolism, 98(12), E2006–E2012. https://doi.org/10.1210/jc.2013-2495
Sun, Y., Yuan, Y., Yang, H., Li, J., Feng, T., Ouyang, Y., Jin, T., & Liu, M. (2016). Association between Common Genetic Variants and Polycystic Ovary Syndrome Risk in a Chinese Han Population. Journal of clinical research in pediatric endocrinology, 8(4), 405–410. https://doi.org/10.4274/jcrpe.2784
CYP11A1 (rs11632698)
Kaur, R., Kaur, T., & Kaur, A. (2018). Genetic association study from North India to analyze association of CYP19A1 and CYP17A1 with polycystic ovary syndrome. Journal of assisted reproduction and genetics, 35(6), 1123–1129. https://doi.org/10.1007/s10815-018-1162-0
CYP17A1 (rs743572)
Rahimi, Z., & Mohammadi M Sc, E. (2019). The CYP17 MSP AI (T-34C) and CYP19A1 (Trp39Arg) variants in polycystic ovary syndrome: A case-control study. International journal of reproductive biomedicine, 17(3), 201–208. https://doi.org/10.18502/ijrm.v17i3.4519
Echiburú, B., Pérez-Bravo, F., Maliqueo, M., Sánchez, F., Crisosto, N., & Sir-Petermann, T. (2008). Polymorphism T –> C (-34 base pairs) of gene CYP17 promoter in women with polycystic ovary syndrome is associated with increased body weight and insulin resistance: a preliminary study. Metabolism: clinical and experimental, 57(12), 1765–1771. https://doi.org/10.1016/j.metabol.2008.08.002
Xu, X., Hu, K., Shi, H., Yu, Y., Xu, J., & Sun, Y. (2021). The single-nucleotide polymorphism rs743572 of CYP17A1 shows significant association with polycystic ovary syndrome: a meta-analysis. Reproductive biomedicine online, 43(5), 941–951. https://doi.org/10.1016/j.rbmo.2021.06.012
Munawar Lone, N., Babar, S., Sultan, S., Malik, S., Nazeer, K., & Riaz, S. (2021). Association of the CYP17 and CYP19 gene polymorphisms in women with polycystic ovary syndrome from Punjab, Pakistan. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 37(5), 456–461. https://doi.org/10.1080/09513590.2020.1822803
Unsal, T., Konac, E., Yesilkaya, E., Yilmaz, A., Bideci, A., Ilke Onen, H., Cinaz, P., & Menevse, A. (2009). Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. Journal of assisted reproduction and genetics, 26(4), 205–216. https://doi.org/10.1007/s10815-009-9308-8
CYP19A1 (rs2414096)
Munawar Lone, N., Babar, S., Sultan, S., Malik, S., Nazeer, K., & Riaz, S. (2021). Association of the CYP17 and CYP19 gene polymorphisms in women with polycystic ovary syndrome from Punjab, Pakistan. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 37(5), 456–461. https://doi.org/10.1080/09513590.2020.1822803
CYP1A1 (rs4646903)
Shen, W., Li, T., Hu, Y., Liu, H., & Song, M. (2014). Common polymorphisms in the CYP1A1 and CYP11A1 genes and polycystic ovary syndrome risk: a meta-analysis and meta-regression. Archives of gynecology and obstetrics, 289(1), 107–118. https://doi.org/10.1007/s00404-013-2939-0
Babu, K. A., Rao, K. L., Kanakavalli, M. K., Suryanarayana, V. V., Deenadayal, M., & Singh, L. (2004). CYP1A1, GSTM1 and GSTT1 genetic polymorphism is associated with susceptibility to polycystic ovaries in South Indian women. Reproductive biomedicine online, 9(2), 194–200. https://doi.org/10.1016/s1472-6483(10)62129-3
Unsal, T., Konac, E., Yesilkaya, E., Yilmaz, A., Bideci, A., Ilke Onen, H., Cinaz, P., & Menevse, A. (2009). Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. Journal of assisted reproduction and genetics, 26(4), 205–216. https://doi.org/10.1007/s10815-009-9308-8
CYP1A1 (rs1048943)
Akgül, S., Derman, O., Alikaşifoğlu, M., & Aktaş, D. (2011). CYP1A1 polymorphism in adolescents with polycystic ovary syndrome. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics, 112(1), 8–10. https://doi.org/10.1016/j.ijgo.2010.07.032
Esinler, I., Aktas, D., Otegen, U., Alikasifoglu, M., Yarali, H., & Tuncbilek, E. (2008). CYP1A1 gene polymorphism and polycystic ovary syndrome. Reproductive biomedicine online, 16(3), 356–360. https://doi.org/10.1016/s1472-6483(10)60596-2
MIR146A (rs2910164)
Mir, R., Tayeb, F. J., Barnawi, J., Jalal, M. M., Saeedi, N. H., Hamadi, A., Altayar, M. A., Alshammari, S. E., Mtiraoui, N., Ali, M. E., Duhier, F. M. A., & Ullah, M. F. (2022). Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. International journal of environmental research and public health, 19(5), 3114. https://doi.org/10.3390/ijerph19053114
Li, R., Yu, Y., Jaafar, S. O., Baghchi, B., Farsimadan, M., Arabipour, I., & Vaziri, H. (2022). Genetic Variants miR-126, miR-146a, miR-196a2, and miR-499 in Polycystic Ovary Syndrome. British journal of biomedical science, 79, 10209. https://doi.org/10.3389/bjbs.2021.10209
Ebrahimi, S. O., Reiisi, S., & Parchami Barjui, S. (2018). Increased risk of polycystic ovary syndrome (PCOS) associated with CC genotype of miR-146a gene variation. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 34(9), 793–797. https://doi.org/10.1080/09513590.2018.1460341
DENND1A (rs2479106)
Wan, P., Meng, L., Huang, C., Dai, B., Jin, Y., Chai, L., Gu, X., Chen, B., & Quan, S. (2021). Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. Journal of assisted reproduction and genetics, 38(10), 2781–2789. https://doi.org/10.1007/s10815-021-02291-1
Bao, S., Cai, J. H., Yang, S. Y., Ren, Y., Feng, T., Jin, T., & Li, Z. R. (2016). Association of DENND1A Gene Polymorphisms with Polycystic Ovary Syndrome: A Meta-Analysis. Journal of clinical research in pediatric endocrinology, 8(2), 135–143. https://doi.org/10.4274/jcrpe.2259
Goodarzi, M. O., Jones, M. R., Li, X., Chua, A. K., Garcia, O. A., Chen, Y. D., Krauss, R. M., Rotter, J. I., Ankener, W., Legro, R. S., Azziz, R., Strauss, J. F., 3rd, Dunaif, A., & Urbanek, M. (2012). Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. Journal of medical genetics, 49(2), 90–95. https://doi.org/10.1136/jmedgenet-2011-100427
DENND1A (rs10818854)
Wan, P., Meng, L., Huang, C., Dai, B., Jin, Y., Chai, L., Gu, X., Chen, B., & Quan, S. (2021). Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. Journal of assisted reproduction and genetics, 38(10), 2781–2789. https://doi.org/10.1007/s10815-021-02291-1
Bao, S., Cai, J. H., Yang, S. Y., Ren, Y., Feng, T., Jin, T., & Li, Z. R. (2016). Association of DENND1A Gene Polymorphisms with Polycystic Ovary Syndrome: A Meta-Analysis. Journal of clinical research in pediatric endocrinology, 8(2), 135–143. https://doi.org/10.4274/jcrpe.2259
Dallel, M., Sarray, S., Douma, Z., Hachani, F., Al-Ansari, A. K., Letaifa, D. B., Mahjoub, T., & Almawi, W. Y. (2018). Differential association of DENND1A genetic variants with polycystic ovary syndrome in Tunisian but not Bahraini Arab women. Gene, 647, 79–84. https://doi.org/10.1016/j.gene.2018.01.028
Goodarzi, M. O., Jones, M. R., Li, X., Chua, A. K., Garcia, O. A., Chen, Y. D., Krauss, R. M., Rotter, J. I., Ankener, W., Legro, R. S., Azziz, R., Strauss, J. F., 3rd, Dunaif, A., & Urbanek, M. (2012). Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. Journal of medical genetics, 49(2), 90–95. https://doi.org/10.1136/jmedgenet-2011-100427
Welt, C. K., Styrkarsdottir, U., Ehrmann, D. A., Thorleifsson, G., Arason, G., Gudmundsson, J. A., Ober, C., Rosenfield, R. L., Saxena, R., Thorsteinsdottir, U., Crowley, W. F., & Stefansson, K. (2012). Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. The Journal of clinical endocrinology and metabolism, 97(7), E1342–E1347. https://doi.org/10.1210/jc.2011-3478
DENND1A (rs10986105)
Xu, Y., Li, Z., Ai, F., Chen, J., Xing, Q., Zhou, P., Wei, Z., Shi, Y., He, X. J., & Cao, Y. (2015). Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PloS one, 10(10), e0140695. https://doi.org/10.1371/journal.pone.0140695
Dallel, M., Sarray, S., Douma, Z., Hachani, F., Al-Ansari, A. K., Letaifa, D. B., Mahjoub, T., & Almawi, W. Y. (2018). Differential association of DENND1A genetic variants with polycystic ovary syndrome in Tunisian but not Bahraini Arab women. Gene, 647, 79–84. https://doi.org/10.1016/j.gene.2018.01.028
Goodarzi, M. O., Jones, M. R., Li, X., Chua, A. K., Garcia, O. A., Chen, Y. D., Krauss, R. M., Rotter, J. I., Ankener, W., Legro, R. S., Azziz, R., Strauss, J. F., 3rd, Dunaif, A., & Urbanek, M. (2012). Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. Journal of medical genetics, 49(2), 90–95. https://doi.org/10.1136/jmedgenet-2011-100427
Welt, C. K., Styrkarsdottir, U., Ehrmann, D. A., Thorleifsson, G., Arason, G., Gudmundsson, J. A., Ober, C., Rosenfield, R. L., Saxena, R., Thorsteinsdottir, U., Crowley, W. F., & Stefansson, K. (2012). Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. The Journal of clinical endocrinology and metabolism, 97(7), E1342–E1347. https://doi.org/10.1210/jc.2011-3478
FSHB (rs11031006)
Hong, S. H., Hong, Y. S., Jeong, K., Chung, H., Lee, H., & Sung, Y. A. (2020). Relationship between the characteristic traits of polycystic ovary syndrome and susceptibility genes. Scientific reports, 10(1), 10479. https://doi.org/10.1038/s41598-020-66633-2
Hayes, M. G., Urbanek, M., Ehrmann, D. A., Armstrong, L. L., Lee, J. Y., Sisk, R., Karaderi, T., Barber, T. M., McCarthy, M. I., Franks, S., Lindgren, C. M., Welt, C. K., Diamanti-Kandarakis, E., Panidis, D., Goodarzi, M. O., Azziz, R., Zhang, Y., James, R. G., Olivier, M., Kissebah, A. H., … Dunaif, A. (2020). Publisher Correction: Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nature communications, 11(1), 2158. https://doi.org/10.1038/s41467-020-15793-w
FSHB (rs10835638)
Dapas, M., Lin, F. T. J., Nadkarni, G. N., Sisk, R., Legro, R. S., Urbanek, M., Hayes, M. G., & Dunaif, A. (2020). Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS medicine, 17(6), e1003132. https://doi.org/10.1371/journal.pmed.1003132
FSHR (rs2268361)
Bakhashab, S., & Ahmed, N. (2019). Genotype based Risk Predictors for Polycystic Ovary Syndrome in Western Saudi Arabia. Bioinformation, 15(11), 812–819. https://doi.org/10.6026/97320630015812
Shi, Y., Zhao, H., Shi, Y., Cao, Y., Yang, D., Li, Z., Zhang, B., Liang, X., Li, T., Chen, J., Shen, J., Zhao, J., You, L., Gao, X., Zhu, D., Zhao, X., Yan, Y., Qin, Y., Li, W., Yan, J., … Chen, Z. J. (2012). Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nature genetics, 44(9), 1020–1025. https://doi.org/10.1038/ng.2384
Du, J., Zhang, W., Guo, L., Zhang, Z., Shi, H., Wang, J., Zhang, H., Gao, L., Feng, G., & He, L. (2010). Two FSHR variants, haplotypes and meta-analysis in Chinese women with premature ovarian failure and polycystic ovary syndrome. Molecular genetics and metabolism, 100(3), 292–295. https://doi.org/10.1016/j.ymgme.2010.03.018
Hong, S. H., Hong, Y. S., Jeong, K., Chung, H., Lee, H., & Sung, Y. A. (2020). Relationship between the characteristic traits of polycystic ovary syndrome and susceptibility genes. Scientific reports, 10(1), 10479. https://doi.org/10.1038/s41598-020-66633-2
FTO (rs9939609)
Wang, X., Wang, K., Yan, J., & Wu, M. (2020). A meta-analysis on associations of FTO, MTHFR and TCF7L2 polymorphisms with polycystic ovary syndrome. Genomics, 112(2), 1516–1521. https://doi.org/10.1016/j.ygeno.2019.08.023
Liu, A. L., Liao, H. Q., Zhou, J., Nie, Y. L., Zhou, C. L., Li, Z. L., Guo, Z. F., He, D. X., Zhu, Y. H., & Peng, C. Y. (2018). The role of FTO variants in the susceptibility of polycystic ovary syndrome and in vitro fertilization outcomes in Chinese women. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 34(8), 719–723. https://doi.org/10.1080/09513590.2018.1441397
Liu, A. L., Xie, H. J., Xie, H. Y., Liu, J., Yin, J., Hu, J. S., & Peng, C. Y. (2017). Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC medical genetics, 18(1), 89. https://doi.org/10.1186/s12881-017-0452-1
Barber, T. M., Bennett, A. J., Groves, C. J., Sovio, U., Ruokonen, A., Martikainen, H., Pouta, A., Hartikainen, A. L., Elliott, P., Lindgren, C. M., Freathy, R. M., Koch, K., Ouwehand, W. H., Karpe, F., Conway, G. S., Wass, J. A., Järvelin, M. R., Franks, S., & McCarthy, M. I. (2008). Association of variants in the fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. Diabetologia, 51(7), 1153–1158. https://doi.org/10.1007/s00125-008-1028-6
FTO (rs8050136)
Song, D. K., Lee, H., Oh, J. Y., Hong, Y. S., & Sung, Y. A. (2014). FTO Gene Variants Are Associated with PCOS Susceptibility and Hyperandrogenemia in Young Korean Women. Diabetes & metabolism journal, 38(4), 302–310. https://doi.org/10.4093/dmj.2014.38.4.302
Liu, A. L., Liao, H. Q., Zhou, J., Nie, Y. L., Zhou, C. L., Li, Z. L., Guo, Z. F., He, D. X., Zhu, Y. H., & Peng, C. Y. (2018). The role of FTO variants in the susceptibility of polycystic ovary syndrome and in vitro fertilization outcomes in Chinese women. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 34(8), 719–723. https://doi.org/10.1080/09513590.2018.1441397
Liu, A. L., Xie, H. J., Xie, H. Y., Liu, J., Yin, J., Hu, J. S., & Peng, C. Y. (2017). Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC medical genetics, 18(1), 89. https://doi.org/10.1186/s12881-017-0452-1
HMGA2 (rs2272046)
Jiao, X., Chen, W., Zhang, J., Wang, W., Song, J., Chen, D., Zhu, W., Shi, Y., & Yu, X. (2018). Variant Alleles of the ESR1, PPARG, HMGA2, and MTHFR Genes Are Associated With Polycystic Ovary Syndrome Risk in a Chinese Population: A Case-Control Study. Frontiers in endocrinology, 9, 504. https://doi.org/10.3389/fendo.2018.00504
Day, F. R., Hinds, D. A., Tung, J. Y., Stolk, L., Styrkarsdottir, U., Saxena, R., Bjonnes, A., Broer, L., Dunger, D. B., Halldorsson, B. V., Lawlor, D. A., Laval, G., Mathieson, I., McCardle, W. L., Louwers, Y., Meun, C., Ring, S., Scott, R. A., Sulem, P., Uitterlinden, A. G., … Perry, J. R. B. (2015). Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nature communications, 6, 8464. https://doi.org/10.1038/ncomms9464
Sun, Y., Yuan, Y., Yang, H., Li, J., Feng, T., Ouyang, Y., Jin, T., & Liu, M. (2016). Association between Common Genetic Variants and Polycystic Ovary Syndrome Risk in a Chinese Han Population. Journal of clinical research in pediatric endocrinology, 8(4), 405–410. https://doi.org/10.4274/jcrpe.2784
Bakhashab, S., & Ahmed, N. (2019). Genotype based Risk Predictors for Polycystic Ovary Syndrome in Western Saudi Arabia. Bioinformation, 15(11), 812–819. https://doi.org/10.6026/97320630015812
INSR (rs2059807)
Wan, P., Meng, L., Huang, C., Dai, B., Jin, Y., Chai, L., Gu, X., Chen, B., & Quan, S. (2021). Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. Journal of assisted reproduction and genetics, 38(10), 2781–2789. https://doi.org/10.1007/s10815-021-02291-1
Louwers, Y. V., Stolk, L., Uitterlinden, A. G., & Laven, J. S. (2013). Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. The Journal of clinical endocrinology and metabolism, 98(12), E2006–E2012. https://doi.org/10.1210/jc.2013-2495
Dakshinamoorthy, J., Jain, P. R., Ramamoorthy, T., Ayyappan, R., & Balasundaram, U. (2020). Association of GWAS identified INSR variants (rs2059807 & rs1799817) with polycystic ovarian syndrome in Indian women. International journal of biological macromolecules, 144, 663–670. https://doi.org/10.1016/j.ijbiomac.2019.10.235
Brower, M. A., Jones, M. R., Rotter, J. I., Krauss, R. M., Legro, R. S., Azziz, R., & Goodarzi, M. O. (2015). Further investigation in europeans of susceptibility variants for polycystic ovary syndrome discovered in genome-wide association studies of Chinese individuals. The Journal of clinical endocrinology and metabolism, 100(1), E182–E186. https://doi.org/10.1210/jc.2014-2689
INSR (rs1799817)
Dakshinamoorthy, J., Jain, P. R., Ramamoorthy, T., Ayyappan, R., & Balasundaram, U. (2020). Association of GWAS identified INSR variants (rs2059807 & rs1799817) with polycystic ovarian syndrome in Indian women. International journal of biological macromolecules, 144, 663–670. https://doi.org/10.1016/j.ijbiomac.2019.10.235
Wan, P., Meng, L., Huang, C., Dai, B., Jin, Y., Chai, L., Gu, X., Chen, B., & Quan, S. (2021). Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. Journal of assisted reproduction and genetics, 38(10), 2781–2789. https://doi.org/10.1007/s10815-021-02291-1
Bagheri, M., Abdi-Rad, I., Hosseini-Jazani, N., Zarrin, R., Nanbakhsh, F., & Mohammadzaie, N. (2015). An Association Study between INSR/NsiI (rs2059806) and INSR/PmlI (rs1799817) SNPs in Women with Polycystic Ovary Syndrome from West Azerbaijan Province, Iran. Journal of reproduction & infertility, 16(2), 109–112.
IRS (rs1805097)
Shi, X., Xie, X., Jia, Y., & Li, S. (2016). Associations of insulin receptor and insulin receptor substrates genetic polymorphisms with polycystic ovary syndrome: A systematic review and meta-analysis. The journal of obstetrics and gynaecology research, 42(7), 844–854. https://doi.org/10.1111/jog.13002
Ruan, Y., Ma, J., & Xie, X. (2012). Association of IRS-1 and IRS-2 genes polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocrine journal, 59(7), 601–609. https://doi.org/10.1507/endocrj.ej11-0387
LHCGR (rs13405728)
Wan, P., Meng, L., Huang, C., Dai, B., Jin, Y., Chai, L., Gu, X., Chen, B., & Quan, S. (2021). Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. Journal of assisted reproduction and genetics, 38(10), 2781–2789. https://doi.org/10.1007/s10815-021-02291-1
Zou, J., Wu, D., Liu, Y., & Tan, S. (2019). Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 35(1), 81–85. https://doi.org/10.1080/09513590.2018.1498834
Ha, L., Shi, Y., Zhao, J., Li, T., & Chen, Z. J. (2015). Association Study between Polycystic Ovarian Syndrome and the Susceptibility Genes Polymorphisms in Hui Chinese Women. PloS one, 10(5), e0126505. https://doi.org/10.1371/journal.pone.0126505
Xu, Y., Li, Z., Ai, F., Chen, J., Xing, Q., Zhou, P., Wei, Z., Shi, Y., He, X. J., & Cao, Y. (2015). Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PloS one, 10(10), e0140695. https://doi.org/10.1371/journal.pone.0140695
Vishnubotla, D. S., Shek, A. P., & Madireddi, S. (2020). Pooled genetic analysis identifies variants that confer enhanced susceptibility to PCOS in Indian ethnicity. Gene, 752, 144760. https://doi.org/10.1016/j.gene.2020.144760
LHCGR (rs2293275)
Zou, J., Wu, D., Liu, Y., & Tan, S. (2019). Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 35(1), 81–85. https://doi.org/10.1080/09513590.2018.1498834
Singh, S., Kaur, M., Kaur, R., Beri, A., & Kaur, A. (2022). Association analysis of LHCGR variants and polycystic ovary syndrome in Punjab: a case-control approach. BMC endocrine disorders, 22(1), 335. https://doi.org/10.1186/s12902-022-01251-9
MTHFR (rs1801133)
Jiao, X., Chen, W., Zhang, J., Wang, W., Song, J., Chen, D., Zhu, W., Shi, Y., & Yu, X. (2018). Variant Alleles of the ESR1, PPARG, HMGA2, and MTHFR Genes Are Associated With Polycystic Ovary Syndrome Risk in a Chinese Population: A Case-Control Study. Frontiers in endocrinology, 9, 504. https://doi.org/10.3389/fendo.2018.00504
Wang, X., Wang, K., Yan, J., & Wu, M. (2020). A meta-analysis on associations of FTO, MTHFR and TCF7L2 polymorphisms with polycystic ovary syndrome. Genomics, 112(2), 1516–1521. https://doi.org/10.1016/j.ygeno.2019.08.023
Naghavi, A., Mozdarani, H., Garshasbi, M., & Yaghmaei, M. (2015). Prevalence of Methylenetetrahydrofolate Reductase C677T Polymorphism in women with Polycystic Ovary Syndrome in southeast of Iran. Journal of medicine and life, 8(Spec Iss 3), 229–232.
Xiong, Y., Bian, C., Lin, X., Wang, X., Xu, K., & Zhao, X. (2020). Methylenetetrahydrofolate reductase gene polymorphisms in the risk of polycystic ovary syndrome and ovarian cancer. Bioscience reports, 40(7), BSR20200995. https://doi.org/10.1042/BSR20200995
MTHFR (rs1801131)
Wang, X., Wang, K., Yan, J., & Wu, M. (2020). A meta-analysis on associations of FTO, MTHFR and TCF7L2 polymorphisms with polycystic ovary syndrome. Genomics, 112(2), 1516–1521. https://doi.org/10.1016/j.ygeno.2019.08.023
Xiong, Y., Bian, C., Lin, X., Wang, X., Xu, K., & Zhao, X. (2020). Methylenetetrahydrofolate reductase gene polymorphisms in the risk of polycystic ovary syndrome and ovarian cancer. Bioscience reports, 40(7), BSR20200995. https://doi.org/10.1042/BSR20200995
PPARG (rs1801282)
Zhang, S., Wang, Y., Jiang, H., Liu, C., Sun, B., Chen, S., Kang, M., & Tang, W. (2015). Peroxisome proliferator-activated receptor gamma rs1801282 C>G polymorphism is associated with polycystic ovary syndrome susceptibility: a meta-analysis involving 7,069 subjects. International journal of clinical and experimental medicine, 8(10), 17418–17429.
Liang, J., Lan, J., Li, M., & Wang, F. (2019). Associations of Leptin Receptor and Peroxisome Proliferator-Activated Receptor Gamma Polymorphisms with Polycystic Ovary Syndrome: A Meta-Analysis. Annals of nutrition & metabolism, 75(1), 1–8. https://doi.org/10.1159/000500996
Jiao, X., Chen, W., Zhang, J., Wang, W., Song, J., Chen, D., Zhu, W., Shi, Y., & Yu, X. (2018). Variant Alleles of the ESR1, PPARG, HMGA2, and MTHFR Genes Are Associated With Polycystic Ovary Syndrome Risk in a Chinese Population: A Case-Control Study. Frontiers in endocrinology, 9, 504. https://doi.org/10.3389/fendo.2018.00504
He, J., Wang, L., Liu, J., Liu, F., & Li, X. (2012). A meta-analysis on the association between PPAR-γ Pro12Ala polymorphism and polycystic ovary syndrome. Journal of assisted reproduction and genetics, 29(7), 669–677. https://doi.org/10.1007/s10815-012-9772-4
Baldani, D. P., Skrgatic, L., Cerne, J. Z., Ferk, P., Simunic, V., & Gersak, K. (2014). Association of PPARG Pro12Ala polymorphism with insulin sensitivity and body mass index in patients with polycystic ovary syndrome. Biomedical reports, 2(2), 199–206. https://doi.org/10.3892/br.2013.215
PPARG (rs1151996)
Jiao, X., Chen, W., Zhang, J., Wang, W., Song, J., Chen, D., Zhu, W., Shi, Y., & Yu, X. (2018). Variant Alleles of the ESR1, PPARG, HMGA2, and MTHFR Genes Are Associated With Polycystic Ovary Syndrome Risk in a Chinese Population: A Case-Control Study. Frontiers in endocrinology, 9, 504. https://doi.org/10.3389/fendo.2018.00504
SHBG (rs13894)
Abu-Hijleh, T. M., Gammoh, E., Al-Busaidi, A. S., Malalla, Z. H., Madan, S., Mahmood, N., & Almawi, W. Y. (2016). Common Variants in the Sex Hormone-Binding Globulin (SHBG) Gene Influence SHBG Levels in Women with Polycystic Ovary Syndrome. Annals of nutrition & metabolism, 68(1), 66–74. https://doi.org/10.1159/000441570
SHBG (rs727428)
Abu-Hijleh, T. M., Gammoh, E., Al-Busaidi, A. S., Malalla, Z. H., Madan, S., Mahmood, N., & Almawi, W. Y. (2016). Common Variants in the Sex Hormone-Binding Globulin (SHBG) Gene Influence SHBG Levels in Women with Polycystic Ovary Syndrome. Annals of nutrition & metabolism, 68(1), 66–74. https://doi.org/10.1159/000441570
Martínez-García, M. Á., Gambineri, A., Alpañés, M., Sanchón, R., Pasquali, R., & Escobar-Morreale, H. F. (2012). Common variants in the sex hormone-binding globulin gene (SHBG) and polycystic ovary syndrome (PCOS) in Mediterranean women. Human reproduction (Oxford, England), 27(12), 3569–3576. https://doi.org/10.1093/humrep/des335
THADA (rs13429458)
Xu, Y., Li, Z., Ai, F., Chen, J., Xing, Q., Zhou, P., Wei, Z., Shi, Y., He, X. J., & Cao, Y. (2015). Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PloS one, 10(10), e0140695. https://doi.org/10.1371/journal.pone.0140695
Wan, P., Meng, L., Huang, C., Dai, B., Jin, Y., Chai, L., Gu, X., Chen, B., & Quan, S. (2021). Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. Journal of assisted reproduction and genetics, 38(10), 2781–2789. https://doi.org/10.1007/s10815-021-02291-1
THADA (rs12468394)
Xu, Y., Li, Z., Ai, F., Chen, J., Xing, Q., Zhou, P., Wei, Z., Shi, Y., He, X. J., & Cao, Y. (2015). Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PloS one, 10(10), e0140695. https://doi.org/10.1371/journal.pone.0140695
THADA (rs12478601)
Xu, Y., Li, Z., Ai, F., Chen, J., Xing, Q., Zhou, P., Wei, Z., Shi, Y., He, X. J., & Cao, Y. (2015). Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PloS one, 10(10), e0140695. https://doi.org/10.1371/journal.pone.0140695
TOX3 (rs4784165)
Zhao, S., Tian, Y., Gao, X., Zhang, X., Liu, H., You, L., Cao, Y., Su, S., Chan, W. Y., Sun, Y., Zhao, H., & Chen, Z. J. (2015). Family-based analysis of eight susceptibility loci in polycystic ovary syndrome. Scientific reports, 5, 12619. https://doi.org/10.1038/srep12619
Louwers, Y. V., Stolk, L., Uitterlinden, A. G., & Laven, J. S. (2013). Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. The Journal of clinical endocrinology and metabolism, 98(12), E2006–E2012. https://doi.org/10.1210/jc.2013-2495
Bakhashab, S., & Ahmed, N. (2019). Genotype based Risk Predictors for Polycystic Ovary Syndrome in Western Saudi Arabia. Bioinformation, 15(11), 812–819. https://doi.org/10.6026/97320630015812
VEGF (rs2010963)
Almawi, W. Y., Gammoh, E., Malalla, Z. H., & Al-Madhi, S. A. (2016). Analysis of VEGFA Variants and Changes in VEGF Levels Underscores the Contribution of VEGF to Polycystic Ovary Syndrome. PloS one, 11(11), e0165636. https://doi.org/10.1371/journal.pone.0165636
Zhao, J., Li, D., Tang, H., & Tang, L. (2020). Association of vascular endothelial growth factor polymorphisms with polycystic ovarian syndrome risk: a meta-analysis. Reproductive biology and endocrinology : RB&E, 18(1), 18. https://doi.org/10.1186/s12958-020-00577-0
Guruvaiah, P., Govatati, S., Reddy, T. V., Lomada, D., Deenadayal, M., Shivaji, S., & Bhanoori, M. (2014). The VEGF +405 G>C 5′ untranslated region polymorphism and risk of PCOS: a study in the South Indian Women. Journal of assisted reproduction and genetics, 31(10), 1383–1389. https://doi.org/10.1007/s10815-014-0310-4
ATXN2 (rs653178)
Medici, M., Porcu, E., Pistis, G., Teumer, A., Brown, S. J., Jensen, R. A., Rawal, R., Roef, G. L., Plantinga, T. S., Vermeulen, S. H., Lahti, J., Simmonds, M. J., Husemoen, L. L., Freathy, R. M., Shields, B. M., Pietzner, D., Nagy, R., Broer, L., Chaker, L., Korevaar, T. I., … Peeters, R. P. (2014). Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics, 10(2), e1004123. https://doi.org/10.1371/journal.pgen.1004123
ATXN2 (rs10774625)
Brčić, L., Barić, A., Gračan, S., Brdar, D., Torlak Lovrić, V., Vidan, N., Zemunik, T., Polašek, O., Barbalić, M., Punda, A., & Boraska Perica, V. (2016). Association of established thyroid peroxidase autoantibody (TPOAb) genetic variants with Hashimoto’s thyroiditis. Autoimmunity, 49(7), 480–485. https://doi.org/10.1080/08916934.2016.1191475
CTLA-4 (rs231775)
Tu, Y., Fan, G., Dai, Y., Zeng, T., Xiao, F., Chen, L., & Kong, W. (2017). Association between rs3087243 and rs231775 polymorphism within the cytotoxic T-lymphocyte antigen 4 gene and Graves‘ disease: a case/control study combined with meta-analyses. Oncotarget, 8(66), 110614–110624. https://doi.org/10.18632/oncotarget.22702
Jiang, X., Hu, H., Fu, Z., Su, Y., & Long, J. (2022). ASSOCIATION BETWEEN THE CTLA-4 EXON 1+49A/G POLYMORPHISM AND THE RELAPSE OF GRAVE’S DISEASE AFTER ATD WITHDRAWAL: A META-ANALYSIS. Acta endocrinologica (Bucharest, Romania : 2005), 18(3), 324–332. https://doi.org/10.4183/aeb.2022.324
Du, L., Yang, J., Huang, J., Ma, Y., Wang, H., Xiong, T., Xiang, Z., Zhang, Y., & Huang, J. (2013). The associations between the polymorphisms in the CTLA-4 gene and the risk of Graves‘ disease in the Chinese population. BMC medical genetics, 14, 46. https://doi.org/10.1186/1471-2350-14-46
Gu, L. Q., Zhu, W., Zhao, S. X., Zhao, L., Zhang, M. J., Cui, B., Song, H. D., Ning, G., & Zhao, Y. J. (2010). Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves‘ disease. Clinical endocrinology, 72(2), 248–255. https://doi.org/10.1111/j.1365-2265.2009.03617.x
CTLA-4 (rs3087243)
Tu, Y., Fan, G., Dai, Y., Zeng, T., Xiao, F., Chen, L., & Kong, W. (2017). Association between rs3087243 and rs231775 polymorphism within the cytotoxic T-lymphocyte antigen 4 gene and Graves‘ disease: a case/control study combined with meta-analyses. Oncotarget, 8(66), 110614–110624. https://doi.org/10.18632/oncotarget.22702
Du, L., Yang, J., Huang, J., Ma, Y., Wang, H., Xiong, T., Xiang, Z., Zhang, Y., & Huang, J. (2013). The associations between the polymorphisms in the CTLA-4 gene and the risk of Graves‘ disease in the Chinese population. BMC medical genetics, 14, 46. https://doi.org/10.1186/1471-2350-14-46
Chen, X., Hu, Z., Liu, M., Li, H., Liang, C., Li, W., Bao, L., Chen, M., & Wu, G. (2018). Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves‘ disease in a Chinese Han population. BMC medical genetics, 19(1), 171. https://doi.org/10.1186/s12881-018-0665-y
Fang, W., Zhang, Z., Zhang, J., Cai, Z., Zeng, H., Chen, M., & Huang, J. (2015). Association of the CTLA4 gene CT60/rs3087243 single-nucleotide polymorphisms with Graves‘ disease. Biomedical reports, 3(5), 691–696. https://doi.org/10.3892/br.2015.493
CTLA-4 (rs4553808)
Gu, L. Q., Zhu, W., Zhao, S. X., Zhao, L., Zhang, M. J., Cui, B., Song, H. D., Ning, G., & Zhao, Y. J. (2010). Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves‘ disease. Clinical endocrinology, 72(2), 248–255. https://doi.org/10.1111/j.1365-2265.2009.03617.x
Chistiakov, D. A., Savost’anov, K. V., Turakulov, R. I., Efremov, I. A., & Demurov, L. M. (2006). Genetic analysis and functional evaluation of the C/T(-318) and A/G(-1661) polymorphisms of the CTLA-4 gene in patients affected with Graves‘ disease. Clinical immunology (Orlando, Fla.), 118(2-3), 233–242. https://doi.org/10.1016/j.clim.2005.09.017
Shehjar, F., Dil-Afroze, Misgar, R. A., Malik, S. A., & Laway, B. A. (2020). A significant association of the CTLA4 gene variants with the risk of autoimmune Graves‘ disease in ethnic Kashmiri population. Cellular immunology, 347, 103995. https://doi.org/10.1016/j.cellimm.2019.103995
CD40 (rs1883832)
Wang, X. X., Wang, X. X., & Chen, T. (2019). Association between the CD40 rs1883832 polymorphism and Graves‘ disease risk: a meta-analysis. EXCLI journal, 18, 10–20.
Chen, X., Hu, Z., Liu, M., Li, H., Liang, C., Li, W., Bao, L., Chen, M., & Wu, G. (2018). Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves‘ disease in a Chinese Han population. BMC medical genetics, 19(1), 171. https://doi.org/10.1186/s12881-018-0665-y
Kim, T. Y., Park, Y. J., Hwang, J. K., Song, J. Y., Park, K. S., Cho, B. Y., & Park, D. J. (2003). A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves‘ disease in Koreans. Thyroid : official journal of the American Thyroid Association, 13(10), 919–925. https://doi.org/10.1089/105072503322511319
Ban, Y., Tozaki, T., Taniyama, M., Tomita, M., & Ban, Y. (2006). Association of a C/T single-nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves‘ disease in Japanese. Thyroid : official journal of the American Thyroid Association, 16(5), 443–446. https://doi.org/10.1089/thy.2006.16.443
DUOX2 (rs181461079)
Chen, X., Kong, X., Zhu, J., Zhang, T., Li, Y., Ding, G., & Wang, H. (2018). Mutational Spectrum Analysis of Seven Genes Associated with Thyroid Dyshormonogenesis. International journal of endocrinology, 2018, 8986475. https://doi.org/10.1155/2018/8986475
Zheng, X., Ma, S. G., Qiu, Y. L., Guo, M. L., & Shao, X. J. (2016). A Novel c.554+5C>T Mutation in the DUOXA2 Gene Combined with p.R885Q Mutation in the DUOX2 Gene Causing Congenital Hypothyroidism. Journal of clinical research in pediatric endocrinology, 8(2), 224–227. https://doi.org/10.4274/jcrpe.2380
Wang, H., Kong, X., Pei, Y., Cui, X., Zhu, Y., He, Z., Wang, Y., Zhang, L., Zhuo, L., Chen, C., & Yan, X. (2020). Mutation spectrum analysis of 29 causative genes in 43 Chinese patients with congenital hypothyroidism. Molecular medicine reports, 22(1), 297–309. https://doi.org/10.3892/mmr.2020.11078
Long, W., Lu, G., Zhou, W., Yang, Y., Zhang, B., Zhou, H., Jiang, L., & Yu, B. (2018). Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocrine journal, 65(10), 1019–1028. https://doi.org/10.1507/endocrj.EJ18-0156
DUOX2 (rs147945181)
Fu, C., Zhang, S., Su, J., Luo, S., Zheng, H., Wang, J., Qin, H., Chen, Y., Shen, Y., Hu, X., Fan, X., Luo, J., Xie, B., Chen, R., & Chen, S. (2015). Mutation screening of DUOX2 in Chinese patients with congenital hypothyroidism. Journal of endocrinological investigation, 38(11), 1219–1224. https://doi.org/10.1007/s40618-015-0382-8
Chen, X., Kong, X., Zhu, J., Zhang, T., Li, Y., Ding, G., & Wang, H. (2018). Mutational Spectrum Analysis of Seven Genes Associated with Thyroid Dyshormonogenesis. International journal of endocrinology, 2018, 8986475. https://doi.org/10.1155/2018/8986475
Long, W., Lu, G., Zhou, W., Yang, Y., Zhang, B., Zhou, H., Jiang, L., & Yu, B. (2018). Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocrine journal, 65(10), 1019–1028. https://doi.org/10.1507/endocrj.EJ18-0156
FCRL3 (rs7528684)
Fang, Y., Li, Y., Zeng, J., Wang, J., Liu, R., & Cao, C. (2016). Genetic association of Fc receptor-like glycoprotein with susceptibility to Graves‘ disease in a Chinese Han population. Immunobiology, 221(1), 56–62. https://doi.org/10.1016/j.imbio.2015.08.002
Kochi, Y., Yamada, R., Suzuki, A., Harley, J. B., Shirasawa, S., Sawada, T., Bae, S. C., Tokuhiro, S., Chang, X., Sekine, A., Takahashi, A., Tsunoda, T., Ohnishi, Y., Kaufman, K. M., Kang, C. P., Kang, C., Otsubo, S., Yumura, W., Mimori, A., Koike, T., … Yamamoto, K. (2005). A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nature genetics, 37(5), 478–485. https://doi.org/10.1038/ng1540
Gu, L. Q., Zhu, W., Zhao, S. X., Zhao, L., Zhang, M. J., Cui, B., Song, H. D., Ning, G., & Zhao, Y. J. (2010). Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves‘ disease. Clinical endocrinology, 72(2), 248–255. https://doi.org/10.1111/j.1365-2265.2009.03617.x
Jin, G. X., Zhou, Y. Y., Yu, L., & Bi, Y. X. (2015). Correlation between single nucleotide polymorphism of FCRL-3 gene and Graves‘ disease in Han population of northern Anhui province, China. International journal of clinical and experimental medicine, 8(8), 12624–12630.
Simmonds, M. J., Heward, J. M., Carr-Smith, J., Foxall, H., Franklyn, J. A., & Gough, S. C. (2006). Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves‘ disease. The Journal of clinical endocrinology and metabolism, 91(3), 1056–1061. https://doi.org/10.1210/jc.2005-1634
HLA-DRB1*08 (rs2395148)
Katahira, M., Ogata, H., Takashima, H., Ito, T., Hodai, Y., Miwata, T., Goto, M., Yamaguchi, M., Mizoguchi, A., Kawakubo, M., & Nakamura, S. (2021). Critical amino acid variants in HLA-DRB1 allotypes in the development of Graves‘ disease and Hashimoto’s thyroiditis in the Japanese population. Human immunology, 82(4), 226–231. https://doi.org/10.1016/j.humimm.2020.12.007
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
Ueda, S., Oryoji, D., Yamamoto, K., Noh, J. Y., Okamura, K., Noda, M., Kashiwase, K., Kosuga, Y., Sekiya, K., Inoue, K., Yamada, H., Oyamada, A., Nishimura, Y., Yoshikai, Y., Ito, K., & Sasazuki, T. (2014). Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. The Journal of clinical endocrinology and metabolism, 99(2), E379–E383. https://doi.org/10.1210/jc.2013-2841
HLA-DRB1*04 (rs9391637)
Cho, W. K., Jung, M. H., Choi, E. J., Choi, H. B., Kim, T. G., & Suh, B. K. (2011). Association of HLA alleles with autoimmune thyroid disease in Korean children. Hormone research in paediatrics, 76(5), 328–334. https://doi.org/10.1159/000331134
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
Ramgopal, S., Rathika, C., Padma, M. R., Murali, V., Arun, K., Kamaludeen, M. N., & Balakrishnan, K. (2018). Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in Autoimmune Thyroid Disease. Gene, 642, 430–438. https://doi.org/10.1016/j.gene.2017.11.057
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
HLA-DRB1*03 (rs2187668)
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
HLA-DRB1*04 (rs3763305)
Cho, W. K., Jung, M. H., Choi, E. J., Choi, H. B., Kim, T. G., & Suh, B. K. (2011). Association of HLA alleles with autoimmune thyroid disease in Korean children. Hormone research in paediatrics, 76(5), 328–334. https://doi.org/10.1159/000331134
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
Ramgopal, S., Rathika, C., Padma, M. R., Murali, V., Arun, K., Kamaludeen, M. N., & Balakrishnan, K. (2018). Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in Autoimmune Thyroid Disease. Gene, 642, 430–438. https://doi.org/10.1016/j.gene.2017.11.057
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
HLA-DRB1*13 (rs17208888)
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
Ueda, S., Oryoji, D., Yamamoto, K., Noh, J. Y., Okamura, K., Noda, M., Kashiwase, K., Kosuga, Y., Sekiya, K., Inoue, K., Yamada, H., Oyamada, A., Nishimura, Y., Yoshikai, Y., Ito, K., & Sasazuki, T. (2014). Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. The Journal of clinical endocrinology and metabolism, 99(2), E379–E383. https://doi.org/10.1210/jc.2013-2841
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
HLA-DRB1*04 (rs4947332)
Cho, W. K., Jung, M. H., Choi, E. J., Choi, H. B., Kim, T. G., & Suh, B. K. (2011). Association of HLA alleles with autoimmune thyroid disease in Korean children. Hormone research in paediatrics, 76(5), 328–334. https://doi.org/10.1159/000331134
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
Ramgopal, S., Rathika, C., Padma, M. R., Murali, V., Arun, K., Kamaludeen, M. N., & Balakrishnan, K. (2018). Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in Autoimmune Thyroid Disease. Gene, 642, 430–438. https://doi.org/10.1016/j.gene.2017.11.057
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
IL-6 (rs1800795)
Imani, D., Rezaei, R., Razi, B., Alizadeh, S., & Mahmoudi, M. (2017). Association Between IL6-174 G/C Polymorphism and Graves‘ Disease: A Systematic Review and Meta-Analysis. Acta medica Iranica, 55(11), 665–671.
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Anvari, M., Khalilzadeh, O., Esteghamati, A., Momen-Heravi, F., Mahmoudi, M., Esfahani, S. A., Rashidi, A., & Amirzargar, A. (2010). Graves‘ disease and gene polymorphism of TNF-α, IL-2, IL-6, IL-12, and IFN-γ. Endocrine, 37(2), 344–348. https://doi.org/10.1007/s12020-010-9311-y
IL-6 (rs1800796)
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Inoue, N., Watanabe, M., Morita, M., Tatusmi, K., Hidaka, Y., Akamizu, T., & Iwatani, Y. (2011). Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. Clinical and experimental immunology, 163(3), 318–323. https://doi.org/10.1111/j.1365-2249.2010.04306.x
IL-2 (rs2069762)
Imani, D., Rezaei, R., Razi, B., Alizadeh, S., & Mahmoudi, M. (2017). Association Between IL6-174 G/C Polymorphism and Graves‘ Disease: A Systematic Review and Meta-Analysis. Acta medica Iranica, 55(11), 665–671.
Inoue, N., Watanabe, M., Morita, M., Tatusmi, K., Hidaka, Y., Akamizu, T., & Iwatani, Y. (2011). Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. Clinical and experimental immunology, 163(3), 318–323. https://doi.org/10.1111/j.1365-2249.2010.04306.x
IL1A (rs1800587)
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Liu, N., Li, X., Liu, C., Zhao, Y., Cui, B., & Ning, G. (2010). The association of interleukin-1alpha and interleukin-1beta polymorphisms with the risk of Graves‘ disease in a case-control study and meta-analysis. Human immunology, 71(4), 397–401. https://doi.org/10.1016/j.humimm.2010.01.023
IL-18 (rs187238)
Huang, C. Y., Ting, W. H., Lo, F. S., Wu, Y. L., Chang, T. Y., Chan, H. W., Lin, W. S., Chen, W. F., Lien, Y. P., & Lee, Y. J. (2013). The IL18 gene and Hashimoto thyroiditis in children. Human immunology, 74(1), 120–124. https://doi.org/10.1016/j.humimm.2012.10.005
Karakaya, D., Çakmak Genc, G., Karakas Celik, S., Aktas, T., Bayraktaroglu, T., & Dursun, A. (2021). Association between IL-18 gene polymorphisms and Hashimoto thyroiditis. Molecular biology reports, 48(10), 6703–6708. https://doi.org/10.1007/s11033-021-06659-5
MTHFR (rs1801131)
Kvaratskhelia, T., Kvaratskhelia, E., Kankava, K., & Abzianidze, E. (2017). MTHFR GENE C677T POLYMORPHISM AND LEVELS OF DNA METHYLTRASFERASES IN SUBCLINICAL HYPOTHYROIDISM. Georgian medical news, (265), 19–24.
Kvaratskhelia, T., Abzianidze, E., Asatiani, K., Kvintradze, M., Surmava, S., & Kvaratskhelia, E. (2020). Methylenetetrahydrofolate Reductase (MTHFR) C677T and A1298C Polymorphisms in Georgian Females with Hypothyroidism. Global medical genetics, 7(2), 47–50. https://doi.org/10.1055/s-0040-1714091
Abu-Hassan, D. W., Alhouri, A. N., Altork, N. A., Shkoukani, Z. W., Altamimi, T. S., Alqaisi, O. M., & Mustafa, B. (2019). MTHFR gene polymorphisms in hypothyroidism and hyperthyroidism among Jordanian females. Archives of endocrinology and metabolism, 63(3), 280–287. https://doi.org/10.20945/2359-3997000000133
Diekman, M. J., van der Put, N. M., Blom, H. J., Tijssen, J. G., & Wiersinga, W. M. (2001). Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism. Clinical endocrinology, 54(2), 197–204. https://doi.org/10.1046/j.1365-2265.2001.01170.x
PDE8B (rs4704397)
Arnaud-Lopez, L., Usala, G., Ceresini, G., Mitchell, B. D., Pilia, M. G., Piras, M. G., Sestu, N., Maschio, A., Busonero, F., Albai, G., Dei, M., Lai, S., Mulas, A., Crisponi, L., Tanaka, T., Bandinelli, S., Guralnik, J. M., Loi, A., Balaci, L., Sole, G., … Naitza, S. (2008). Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. American journal of human genetics, 82(6), 1270–1280. https://doi.org/10.1016/j.ajhg.2008.04.019
Mansuri, T., Jadeja, S. H. D., Singh, M., Begum, R., & Robin, P. (2020). Phosphodiesterase 8B Polymorphism rs4704397 Is Associated with Infertility in Subclinical Hypothyroid Females: A Case-Control Study. International journal of fertility & sterility, 14(2), 122–128. https://doi.org/10.22074/ijfs.2020.6015
Agretti, P., De Marco, G., Di Cosmo, C., Bagattini, B., Ferrarini, E., Montanelli, L., Vitti, P., & Tonacchera, M. (2014). Frequency and effect on serum TSH of phosphodiesterase 8B (PDE8B) gene polymorphisms in patients with sporadic nonautoimmune subclinical hypothyroidism. Journal of endocrinological investigation, 37(2), 189–194. https://doi.org/10.1007/s40618-013-0036-7
Jorde, R., Schirmer, H., Wilsgaard, T., Joakimsen, R. M., Mathiesen, E. B., Njølstad, I., Løchen, M. L., Figenschau, Y., Svartberg, J., Hutchinson, M. S., Kjærgaard, M., Jørgensen, L., & Grimnes, G. (2014). The phosphodiesterase 8B gene rs4704397 is associated with thyroid function, risk of myocardial infarction, and body height: the Tromsø study. Thyroid : official journal of the American Thyroid Association, 24(2), 215–222. https://doi.org/10.1089/thy.2013.0177
PDE8B (rs6885099)
Agretti, P., De Marco, G., Di Cosmo, C., Bagattini, B., Ferrarini, E., Montanelli, L., Vitti, P., & Tonacchera, M. (2014). Frequency and effect on serum TSH of phosphodiesterase 8B (PDE8B) gene polymorphisms in patients with sporadic nonautoimmune subclinical hypothyroidism. Journal of endocrinological investigation, 37(2), 189–194. https://doi.org/10.1007/s40618-013-0036-7
Porcu, E., Medici, M., Pistis, G., Volpato, C. B., Wilson, S. G., Cappola, A. R., Bos, S. D., Deelen, J., den Heijer, M., Freathy, R. M., Lahti, J., Liu, C., Lopez, L. M., Nolte, I. M., O’Connell, J. R., Tanaka, T., Trompet, S., Arnold, A., Bandinelli, S., Beekman, M., … Naitza, S. (2013). A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS genetics, 9(2), e1003266. https://doi.org/10.1371/journal.pgen.1003266
Arnaud-Lopez, L., Usala, G., Ceresini, G., Mitchell, B. D., Pilia, M. G., Piras, M. G., Sestu, N., Maschio, A., Busonero, F., Albai, G., Dei, M., Lai, S., Mulas, A., Crisponi, L., Tanaka, T., Bandinelli, S., Guralnik, J. M., Loi, A., Balaci, L., Sole, G., … Naitza, S. (2008). Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. American journal of human genetics, 82(6), 1270–1280. https://doi.org/10.1016/j.ajhg.2008.04.019
HLA-DQB1*03 (rs7454108)
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
PTPN22 (rs2476601)
Rydzewska, M., Góralczyk, A., Gościk, J., Wawrusiewicz-Kurylonek, N., Bossowska, A., Krętowski, A., & Bossowski, A. (2018). Analysis of chosen polymorphisms rs2476601 a/G – PTPN22, rs1990760 C/T – IFIH1, rs179247 a/G – TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity, 51(4), 183–190. https://doi.org/10.1080/08916934.2018.1486824
Wu, H., Wan, S., Qu, M., Ren, B., Liu, L., & Shen, H. (2022). The Relationship between PTPN22 R620W Polymorphisms and the Susceptibility to Autoimmune Thyroid Diseases: An Updated Meta-analysis. Immunological investigations, 51(2), 438–451. https://doi.org/10.1080/08820139.2020.1837154
Criswell, L. A., Pfeiffer, K. A., Lum, R. F., Gonzales, B., Novitzke, J., Kern, M., Moser, K. L., Begovich, A. B., Carlton, V. E., Li, W., Lee, A. T., Ortmann, W., Behrens, T. W., & Gregersen, P. K. (2005). Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. American journal of human genetics, 76(4), 561–571. https://doi.org/10.1086/429096
Bulut, F., Erol, D., Elyas, H., Doğan, H., Ozdemir, F. A., & Keskin, L. (2014). Protein Tyrosine Phosphatase Non-receptor 22 Gene C1858T Polymorphism in Patients with Coexistent Type 2 Diabetes and Hashimoto’s Thyroiditis. Balkan medical journal, 31(1), 37–42. https://doi.org/10.5152/balkanmedj.2014.9418
STAT4 (rs7574865)
Park, Y., Lee, H. S., Park, Y., Min, D., Yang, S., Kim, D., & Cho, B. (2011). Evidence for the role of STAT4 as a general autoimmunity locus in the Korean population. Diabetes/metabolism research and reviews, 27(8), 867–871. https://doi.org/10.1002/dmrr.1263
Gao, X., Wang, J., & Yu, Y. (2019). The Association Between STAT4 rs7574865 Polymorphism and the Susceptibility of Autoimmune Thyroid Disease: A Meta-Analysis. Frontiers in genetics, 9, 708. https://doi.org/10.3389/fgene.2018.00708
Yan, N., Meng, S., Zhou, J., Xu, J., Muhali, F. S., Jiang, W., Shi, L., Shi, X., & Zhang, J. (2014). Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population. International journal of molecular sciences, 15(7), 12280–12293. https://doi.org/10.3390/ijms150712280
TLR10 (rs10004195)
Li, M., Han, W., Zhu, L., Jiang, J., Qu, W., Zhang, L., Jia, L., & Zhou, Q. (2019). IRAK2 and TLR10 confer risk of Hashimoto’s disease: a genetic association study based on the Han Chinese population. Journal of human genetics, 64(7), 617–623. https://doi.org/10.1038/s10038-019-0613-5
Cho, W. K., Jang, J. P., Choi, E. J., Jeon, Y. J., Jung, I. A., Kim, S. H., Jung, M. H., Kim, T. G., & Suh, B. K. (2015). Association of Toll-like receptor 10 polymorphisms with autoimmune thyroid disease in Korean children. Thyroid : official journal of the American Thyroid Association, 25(2), 250–255. https://doi.org/10.1089/thy.2014.0135
TNF-Alpha (rs1800629)
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Tu, Y., Fan, G., Zeng, T., Cai, X., & Kong, W. (2018). Association of TNF-α promoter polymorphism and Graves‘ disease: an updated systematic review and meta-analysis. Bioscience reports, 38(2), BSR20180143. https://doi.org/10.1042/BSR20180143
Li, N., Zhou, Z., Liu, X., Liu, Y., Zhang, J., Du, L., Wei, M., & Chen, X. (2008). Association of tumour necrosis factor alpha (TNF-alpha) polymorphisms with Graves‘ disease: A meta-analysis. Clinical biochemistry, 41(10-11), 881–886. https://doi.org/10.1016/j.clinbiochem.2008.04.014
TSHR (rs12101255)
Gong, J., Jiang, S. J., Wang, D. K., Dong, H., Chen, G., Fang, K., Cui, J. R., & Lu, F. E. (2016). Association of polymorphisms of rs179247 and rs12101255 in thyroid stimulating hormone receptor intron 1 with an increased risk of Graves‘ disease: A meta-analysis. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 36(4), 473–479. https://doi.org/10.1007/s11596-016-1611-x
Qian, W., Xu, K., Jia, W., Lan, L., Zheng, X., Yang, X., & Cui, D. (2016). Association between TSHR gene polymorphism and the risk of Graves‘ disease: a meta-analysis. Journal of biomedical research, 30(6), 466–475. https://doi.org/10.7555/JBR.30.20140144
TPO (rs11675434)
Medici, M., Porcu, E., Pistis, G., Teumer, A., Brown, S. J., Jensen, R. A., Rawal, R., Roef, G. L., Plantinga, T. S., Vermeulen, S. H., Lahti, J., Simmonds, M. J., Husemoen, L. L., Freathy, R. M., Shields, B. M., Pietzner, D., Nagy, R., Broer, L., Chaker, L., Korevaar, T. I., … Peeters, R. P. (2014). Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics, 10(2), e1004123. https://doi.org/10.1371/journal.pgen.1004123
Brčić, L., Barić, A., Gračan, S., Brdar, D., Torlak Lovrić, V., Vidan, N., Zemunik, T., Polašek, O., Barbalić, M., Punda, A., & Boraska Perica, V. (2016). Association of established thyroid peroxidase autoantibody (TPOAb) genetic variants with Hashimoto’s thyroiditis. Autoimmunity, 49(7), 480–485. https://doi.org/10.1080/08916934.2016.1191475
TPO (rs2071403)
Kwak, S. H., Park, Y. J., Go, M. J., Lee, K. E., Kim, S. J., Choi, H. S., Kim, T. H., Choi, S. H., Lim, S., Kim, K. W., Park, D. J., Kim, S. S., Lee, J. Y., Park, K. S., Jang, H. C., & Cho, N. H. (2014). A genome-wide association study on thyroid function and anti-thyroid peroxidase antibodies in Koreans. Human molecular genetics, 23(16), 4433–4442. https://doi.org/10.1093/hmg/ddu145
Tomari, S., Watanabe, M., Inoue, N., Mizuma, T., Yamanaka, C., Hidaka, Y., & Iwatani, Y. (2017). The polymorphisms in the thyroid peroxidase gene were associated with the development of autoimmune thyroid disease and the serum levels of anti-thyroid peroxidase antibody. Endocrine journal, 64(10), 1025–1032. https://doi.org/10.1507/endocrj.EJ17-0191
TSHR (rs179247)
Inoue, N., Watanabe, M., Katsumata, Y., Hidaka, Y., & Iwatani, Y. (2013). Different genotypes of a functional polymorphism of the TSHR gene are associated with the development and severity of Graves‘ and Hashimoto’s diseases. Tissue antigens, 82(4), 288–290. https://doi.org/10.1111/tan.12190
Rydzewska, M., Góralczyk, A., Gościk, J., Wawrusiewicz-Kurylonek, N., Bossowska, A., Krętowski, A., & Bossowski, A. (2018). Analysis of chosen polymorphisms rs2476601 a/G – PTPN22, rs1990760 C/T – IFIH1, rs179247 a/G – TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity, 51(4), 183–190. https://doi.org/10.1080/08916934.2018.1486824
TSHR (rs3783938)
Liu, L., Wu, H. Q., Wang, Q., Zhu, Y. F., Zhang, W., Guan, L. J., & Zhang, J. A. (2012). Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocrine journal, 59(8), 717–723. https://doi.org/10.1507/endocrj.ej12-0024
VDR (rs7975232)
Inoue, N., Watanabe, M., Ishido, N., Katsumata, Y., Kagawa, T., Hidaka, Y., & Iwatani, Y. (2014). The functional polymorphisms of VDR, GC and CYP2R1 are involved in the pathogenesis of autoimmune thyroid diseases. Clinical and experimental immunology, 178(2), 262–269. https://doi.org/10.1111/cei.12420
Zhou, H., Xu, C., & Gu, M. (2009). Vitamin D receptor (VDR) gene polymorphisms and Graves‘ disease: a meta-analysis. Clinical endocrinology, 70(6), 938–945. https://doi.org/10.1111/j.1365-2265.2008.03413.x
Zhou, F., Liang, Z., Wang, X., Tan, G., Wei, W., Zheng, G., Ma, X., Tian, D., Li, H., & Yu, H. (2021). The VDR gene confers a genetic predisposition to Graves‘ disease and Graves‘ ophthalmopathy in the Southwest Chinese Han population. Gene, 793, 145750. https://doi.org/10.1016/j.gene.2021.145750
Ban, Y., Taniyama, M., & Ban, Y. (2000). Vitamin D receptor gene polymorphism is associated with Graves‘ disease in the Japanese population. The Journal of clinical endocrinology and metabolism, 85(12), 4639–4643. https://doi.org/10.1210/jcem.85.12.7038
Stefanić, M., Karner, I., Glavas-Obrovac, L., Papić, S., Vrdoljak, D., Levak, G., & Krstonosić, B. (2005). Association of vitamin D receptor gene polymorphism with susceptibility to Graves‘ disease in Eastern Croatian population: case-control study. Croatian medical journal, 46(4), 639–646.
VDR (rs731236)
Stefanić, M., Karner, I., Glavas-Obrovac, L., Papić, S., Vrdoljak, D., Levak, G., & Krstonosić, B. (2005). Association of vitamin D receptor gene polymorphism with susceptibility to Graves‘ disease in Eastern Croatian population: case-control study. Croatian medical journal, 46(4), 639–646.
Veneti, S., Anagnostis, P., Adamidou, F., Artzouchaltzi, A. M., Boboridis, K., & Kita, M. (2019). Association between vitamin D receptor gene polymorphisms and Graves‘ disease: a systematic review and meta-analysis. Endocrine, 65(2), 244–251. https://doi.org/10.1007/s12020-019-01902-3
Feng, M., Li, H., Chen, S. F., Li, W. F., & Zhang, F. B. (2013). Polymorphisms in the vitamin D receptor gene and risk of autoimmune thyroid diseases: a meta-analysis. Endocrine, 43(2), 318–326. https://doi.org/10.1007/s12020-012-9812-y
VDR (rs2228570)
Wang, X., Cheng, W., Ma, Y., & Zhu, J. (2017). Vitamin D receptor gene FokI but not TaqI, ApaI, BsmI polymorphism is associated with Hashimoto’s thyroiditis: a meta-analysis. Scientific reports, 7, 41540. https://doi.org/10.1038/srep41540
Djurovic, J., Stojkovic, O., Ozdemir, O., Silan, F., Akurut, C., Todorovic, J., Savic, K., & Stamenkovic, G. (2015). Association between FokI, ApaI and TaqI RFLP polymorphisms in VDR gene and Hashimoto’s thyroiditis: preliminary data from female patients in Serbia. International journal of immunogenetics, 42(3), 190–194. https://doi.org/10.1111/iji.12199
Zarrin, R., Bagheri, M., Mehdizadeh, A., Ayremlou, P., & Faghfouri, A. H. (2018). The association of FokI and ApaI polymorphisms in vitamin D receptor gene with autoimmune thyroid diseases in the northwest of Iran. Medical journal of the Islamic Republic of Iran, 32, 4. https://doi.org/10.14196/mjiri.32.4
Lin, W. Y., Wan, L., Tsai, C. H., Chen, R. H., Lee, C. C., & Tsai, F. J. (2006). Vitamin D receptor gene polymorphisms are associated with risk of Hashimoto’s thyroiditis in Chinese patients in Taiwan. Journal of clinical laboratory analysis, 20(3), 109–112. https://doi.org/10.1002/jcla.20110
Ban, Y., Taniyama, M., & Ban, Y. (2001). Vitamin D receptor gene polymorphisms in Hashimoto’s thyroiditis. Thyroid : official journal of the American Thyroid Association, 11(6), 607–608. https://doi.org/10.1089/105072501750302967
Yazici, D., Yavuz, D., Tarcin, O., Sancak, S., Deyneli, O., & Akalin, S. (2013). Vitamin D receptor gene ApaI, TaqI, FokI and BsmI polymorphisms in a group of Turkish patients with Hashimoto’s thyroiditis. Minerva endocrinologica, 38(2), 195–201.
ATXN2 (rs653178)
Medici, M., Porcu, E., Pistis, G., Teumer, A., Brown, S. J., Jensen, R. A., Rawal, R., Roef, G. L., Plantinga, T. S., Vermeulen, S. H., Lahti, J., Simmonds, M. J., Husemoen, L. L., Freathy, R. M., Shields, B. M., Pietzner, D., Nagy, R., Broer, L., Chaker, L., Korevaar, T. I., … Peeters, R. P. (2014). Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics, 10(2), e1004123. https://doi.org/10.1371/journal.pgen.1004123
ATXN2 (rs10774625)
Brčić, L., Barić, A., Gračan, S., Brdar, D., Torlak Lovrić, V., Vidan, N., Zemunik, T., Polašek, O., Barbalić, M., Punda, A., & Boraska Perica, V. (2016). Association of established thyroid peroxidase autoantibody (TPOAb) genetic variants with Hashimoto’s thyroiditis. Autoimmunity, 49(7), 480–485. https://doi.org/10.1080/08916934.2016.1191475
CTLA-4 (rs231775)
Tu, Y., Fan, G., Dai, Y., Zeng, T., Xiao, F., Chen, L., & Kong, W. (2017). Association between rs3087243 and rs231775 polymorphism within the cytotoxic T-lymphocyte antigen 4 gene and Graves‘ disease: a case/control study combined with meta-analyses. Oncotarget, 8(66), 110614–110624. https://doi.org/10.18632/oncotarget.22702
Jiang, X., Hu, H., Fu, Z., Su, Y., & Long, J. (2022). ASSOCIATION BETWEEN THE CTLA-4 EXON 1+49A/G POLYMORPHISM AND THE RELAPSE OF GRAVE’S DISEASE AFTER ATD WITHDRAWAL: A META-ANALYSIS. Acta endocrinologica (Bucharest, Romania : 2005), 18(3), 324–332. https://doi.org/10.4183/aeb.2022.324
Du, L., Yang, J., Huang, J., Ma, Y., Wang, H., Xiong, T., Xiang, Z., Zhang, Y., & Huang, J. (2013). The associations between the polymorphisms in the CTLA-4 gene and the risk of Graves‘ disease in the Chinese population. BMC medical genetics, 14, 46. https://doi.org/10.1186/1471-2350-14-46
Gu, L. Q., Zhu, W., Zhao, S. X., Zhao, L., Zhang, M. J., Cui, B., Song, H. D., Ning, G., & Zhao, Y. J. (2010). Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves‘ disease. Clinical endocrinology, 72(2), 248–255. https://doi.org/10.1111/j.1365-2265.2009.03617.x
CTLA-4 (rs3087243)
Tu, Y., Fan, G., Dai, Y., Zeng, T., Xiao, F., Chen, L., & Kong, W. (2017). Association between rs3087243 and rs231775 polymorphism within the cytotoxic T-lymphocyte antigen 4 gene and Graves‘ disease: a case/control study combined with meta-analyses. Oncotarget, 8(66), 110614–110624. https://doi.org/10.18632/oncotarget.22702
Du, L., Yang, J., Huang, J., Ma, Y., Wang, H., Xiong, T., Xiang, Z., Zhang, Y., & Huang, J. (2013). The associations between the polymorphisms in the CTLA-4 gene and the risk of Graves‘ disease in the Chinese population. BMC medical genetics, 14, 46. https://doi.org/10.1186/1471-2350-14-46
Chen, X., Hu, Z., Liu, M., Li, H., Liang, C., Li, W., Bao, L., Chen, M., & Wu, G. (2018). Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves‘ disease in a Chinese Han population. BMC medical genetics, 19(1), 171. https://doi.org/10.1186/s12881-018-0665-y
Fang, W., Zhang, Z., Zhang, J., Cai, Z., Zeng, H., Chen, M., & Huang, J. (2015). Association of the CTLA4 gene CT60/rs3087243 single-nucleotide polymorphisms with Graves‘ disease. Biomedical reports, 3(5), 691–696. https://doi.org/10.3892/br.2015.493
CTLA-4 (rs4553808)
Gu, L. Q., Zhu, W., Zhao, S. X., Zhao, L., Zhang, M. J., Cui, B., Song, H. D., Ning, G., & Zhao, Y. J. (2010). Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves‘ disease. Clinical endocrinology, 72(2), 248–255. https://doi.org/10.1111/j.1365-2265.2009.03617.x
Chistiakov, D. A., Savost’anov, K. V., Turakulov, R. I., Efremov, I. A., & Demurov, L. M. (2006). Genetic analysis and functional evaluation of the C/T(-318) and A/G(-1661) polymorphisms of the CTLA-4 gene in patients affected with Graves‘ disease. Clinical immunology (Orlando, Fla.), 118(2-3), 233–242. https://doi.org/10.1016/j.clim.2005.09.017
Shehjar, F., Dil-Afroze, Misgar, R. A., Malik, S. A., & Laway, B. A. (2020). A significant association of the CTLA4 gene variants with the risk of autoimmune Graves‘ disease in ethnic Kashmiri population. Cellular immunology, 347, 103995. https://doi.org/10.1016/j.cellimm.2019.103995
CD40 (rs1883832)
Wang, X. X., Wang, X. X., & Chen, T. (2019). Association between the CD40 rs1883832 polymorphism and Graves‘ disease risk: a meta-analysis. EXCLI journal, 18, 10–20.
Chen, X., Hu, Z., Liu, M., Li, H., Liang, C., Li, W., Bao, L., Chen, M., & Wu, G. (2018). Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves‘ disease in a Chinese Han population. BMC medical genetics, 19(1), 171. https://doi.org/10.1186/s12881-018-0665-y
Kim, T. Y., Park, Y. J., Hwang, J. K., Song, J. Y., Park, K. S., Cho, B. Y., & Park, D. J. (2003). A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves‘ disease in Koreans. Thyroid : official journal of the American Thyroid Association, 13(10), 919–925. https://doi.org/10.1089/105072503322511319
Ban, Y., Tozaki, T., Taniyama, M., Tomita, M., & Ban, Y. (2006). Association of a C/T single-nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves‘ disease in Japanese. Thyroid : official journal of the American Thyroid Association, 16(5), 443–446. https://doi.org/10.1089/thy.2006.16.443
DUOX2 (rs181461079)
Chen, X., Kong, X., Zhu, J., Zhang, T., Li, Y., Ding, G., & Wang, H. (2018). Mutational Spectrum Analysis of Seven Genes Associated with Thyroid Dyshormonogenesis. International journal of endocrinology, 2018, 8986475. https://doi.org/10.1155/2018/8986475
Zheng, X., Ma, S. G., Qiu, Y. L., Guo, M. L., & Shao, X. J. (2016). A Novel c.554+5C>T Mutation in the DUOXA2 Gene Combined with p.R885Q Mutation in the DUOX2 Gene Causing Congenital Hypothyroidism. Journal of clinical research in pediatric endocrinology, 8(2), 224–227. https://doi.org/10.4274/jcrpe.2380
Wang, H., Kong, X., Pei, Y., Cui, X., Zhu, Y., He, Z., Wang, Y., Zhang, L., Zhuo, L., Chen, C., & Yan, X. (2020). Mutation spectrum analysis of 29 causative genes in 43 Chinese patients with congenital hypothyroidism. Molecular medicine reports, 22(1), 297–309. https://doi.org/10.3892/mmr.2020.11078
Long, W., Lu, G., Zhou, W., Yang, Y., Zhang, B., Zhou, H., Jiang, L., & Yu, B. (2018). Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocrine journal, 65(10), 1019–1028. https://doi.org/10.1507/endocrj.EJ18-0156
DUOX2 (rs147945181)
Fu, C., Zhang, S., Su, J., Luo, S., Zheng, H., Wang, J., Qin, H., Chen, Y., Shen, Y., Hu, X., Fan, X., Luo, J., Xie, B., Chen, R., & Chen, S. (2015). Mutation screening of DUOX2 in Chinese patients with congenital hypothyroidism. Journal of endocrinological investigation, 38(11), 1219–1224. https://doi.org/10.1007/s40618-015-0382-8
Chen, X., Kong, X., Zhu, J., Zhang, T., Li, Y., Ding, G., & Wang, H. (2018). Mutational Spectrum Analysis of Seven Genes Associated with Thyroid Dyshormonogenesis. International journal of endocrinology, 2018, 8986475. https://doi.org/10.1155/2018/8986475
Long, W., Lu, G., Zhou, W., Yang, Y., Zhang, B., Zhou, H., Jiang, L., & Yu, B. (2018). Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocrine journal, 65(10), 1019–1028. https://doi.org/10.1507/endocrj.EJ18-0156
FCRL3 (rs7528684)
Fang, Y., Li, Y., Zeng, J., Wang, J., Liu, R., & Cao, C. (2016). Genetic association of Fc receptor-like glycoprotein with susceptibility to Graves‘ disease in a Chinese Han population. Immunobiology, 221(1), 56–62. https://doi.org/10.1016/j.imbio.2015.08.002
Kochi, Y., Yamada, R., Suzuki, A., Harley, J. B., Shirasawa, S., Sawada, T., Bae, S. C., Tokuhiro, S., Chang, X., Sekine, A., Takahashi, A., Tsunoda, T., Ohnishi, Y., Kaufman, K. M., Kang, C. P., Kang, C., Otsubo, S., Yumura, W., Mimori, A., Koike, T., … Yamamoto, K. (2005). A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nature genetics, 37(5), 478–485. https://doi.org/10.1038/ng1540
Gu, L. Q., Zhu, W., Zhao, S. X., Zhao, L., Zhang, M. J., Cui, B., Song, H. D., Ning, G., & Zhao, Y. J. (2010). Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves‘ disease. Clinical endocrinology, 72(2), 248–255. https://doi.org/10.1111/j.1365-2265.2009.03617.x
Jin, G. X., Zhou, Y. Y., Yu, L., & Bi, Y. X. (2015). Correlation between single nucleotide polymorphism of FCRL-3 gene and Graves‘ disease in Han population of northern Anhui province, China. International journal of clinical and experimental medicine, 8(8), 12624–12630.
Simmonds, M. J., Heward, J. M., Carr-Smith, J., Foxall, H., Franklyn, J. A., & Gough, S. C. (2006). Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves‘ disease. The Journal of clinical endocrinology and metabolism, 91(3), 1056–1061. https://doi.org/10.1210/jc.2005-1634
HLA-DRB1*08 (rs2395148)
Katahira, M., Ogata, H., Takashima, H., Ito, T., Hodai, Y., Miwata, T., Goto, M., Yamaguchi, M., Mizoguchi, A., Kawakubo, M., & Nakamura, S. (2021). Critical amino acid variants in HLA-DRB1 allotypes in the development of Graves‘ disease and Hashimoto’s thyroiditis in the Japanese population. Human immunology, 82(4), 226–231. https://doi.org/10.1016/j.humimm.2020.12.007
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
Ueda, S., Oryoji, D., Yamamoto, K., Noh, J. Y., Okamura, K., Noda, M., Kashiwase, K., Kosuga, Y., Sekiya, K., Inoue, K., Yamada, H., Oyamada, A., Nishimura, Y., Yoshikai, Y., Ito, K., & Sasazuki, T. (2014). Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. The Journal of clinical endocrinology and metabolism, 99(2), E379–E383. https://doi.org/10.1210/jc.2013-2841
HLA-DRB1*04 (rs9391637)
Cho, W. K., Jung, M. H., Choi, E. J., Choi, H. B., Kim, T. G., & Suh, B. K. (2011). Association of HLA alleles with autoimmune thyroid disease in Korean children. Hormone research in paediatrics, 76(5), 328–334. https://doi.org/10.1159/000331134
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
Ramgopal, S., Rathika, C., Padma, M. R., Murali, V., Arun, K., Kamaludeen, M. N., & Balakrishnan, K. (2018). Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in Autoimmune Thyroid Disease. Gene, 642, 430–438. https://doi.org/10.1016/j.gene.2017.11.057
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
HLA-DRB1*03 (rs2187668)
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
HLA-DRB1*04 (rs3763305)
Cho, W. K., Jung, M. H., Choi, E. J., Choi, H. B., Kim, T. G., & Suh, B. K. (2011). Association of HLA alleles with autoimmune thyroid disease in Korean children. Hormone research in paediatrics, 76(5), 328–334. https://doi.org/10.1159/000331134
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
Ramgopal, S., Rathika, C., Padma, M. R., Murali, V., Arun, K., Kamaludeen, M. N., & Balakrishnan, K. (2018). Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in Autoimmune Thyroid Disease. Gene, 642, 430–438. https://doi.org/10.1016/j.gene.2017.11.057
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
HLA-DRB1*13 (rs17208888)
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
Ueda, S., Oryoji, D., Yamamoto, K., Noh, J. Y., Okamura, K., Noda, M., Kashiwase, K., Kosuga, Y., Sekiya, K., Inoue, K., Yamada, H., Oyamada, A., Nishimura, Y., Yoshikai, Y., Ito, K., & Sasazuki, T. (2014). Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. The Journal of clinical endocrinology and metabolism, 99(2), E379–E383. https://doi.org/10.1210/jc.2013-2841
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
HLA-DRB1*04 (rs4947332)
Cho, W. K., Jung, M. H., Choi, E. J., Choi, H. B., Kim, T. G., & Suh, B. K. (2011). Association of HLA alleles with autoimmune thyroid disease in Korean children. Hormone research in paediatrics, 76(5), 328–334. https://doi.org/10.1159/000331134
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
Ramgopal, S., Rathika, C., Padma, M. R., Murali, V., Arun, K., Kamaludeen, M. N., & Balakrishnan, K. (2018). Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in Autoimmune Thyroid Disease. Gene, 642, 430–438. https://doi.org/10.1016/j.gene.2017.11.057
Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C., & Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves‘ disease. Genes and immunity, 9(4), 358–363. https://doi.org/10.1038/gene.2008.26
IL-6 (rs1800795)
Imani, D., Rezaei, R., Razi, B., Alizadeh, S., & Mahmoudi, M. (2017). Association Between IL6-174 G/C Polymorphism and Graves‘ Disease: A Systematic Review and Meta-Analysis. Acta medica Iranica, 55(11), 665–671.
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Anvari, M., Khalilzadeh, O., Esteghamati, A., Momen-Heravi, F., Mahmoudi, M., Esfahani, S. A., Rashidi, A., & Amirzargar, A. (2010). Graves‘ disease and gene polymorphism of TNF-α, IL-2, IL-6, IL-12, and IFN-γ. Endocrine, 37(2), 344–348. https://doi.org/10.1007/s12020-010-9311-y
IL-6 (rs1800796)
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Inoue, N., Watanabe, M., Morita, M., Tatusmi, K., Hidaka, Y., Akamizu, T., & Iwatani, Y. (2011). Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. Clinical and experimental immunology, 163(3), 318–323. https://doi.org/10.1111/j.1365-2249.2010.04306.x
IL-2 (rs2069762)
Imani, D., Rezaei, R., Razi, B., Alizadeh, S., & Mahmoudi, M. (2017). Association Between IL6-174 G/C Polymorphism and Graves‘ Disease: A Systematic Review and Meta-Analysis. Acta medica Iranica, 55(11), 665–671.
Inoue, N., Watanabe, M., Morita, M., Tatusmi, K., Hidaka, Y., Akamizu, T., & Iwatani, Y. (2011). Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. Clinical and experimental immunology, 163(3), 318–323. https://doi.org/10.1111/j.1365-2249.2010.04306.x
IL1A (rs1800587)
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Liu, N., Li, X., Liu, C., Zhao, Y., Cui, B., & Ning, G. (2010). The association of interleukin-1alpha and interleukin-1beta polymorphisms with the risk of Graves‘ disease in a case-control study and meta-analysis. Human immunology, 71(4), 397–401. https://doi.org/10.1016/j.humimm.2010.01.023
IL-18 (rs187238)
Huang, C. Y., Ting, W. H., Lo, F. S., Wu, Y. L., Chang, T. Y., Chan, H. W., Lin, W. S., Chen, W. F., Lien, Y. P., & Lee, Y. J. (2013). The IL18 gene and Hashimoto thyroiditis in children. Human immunology, 74(1), 120–124. https://doi.org/10.1016/j.humimm.2012.10.005
Karakaya, D., Çakmak Genc, G., Karakas Celik, S., Aktas, T., Bayraktaroglu, T., & Dursun, A. (2021). Association between IL-18 gene polymorphisms and Hashimoto thyroiditis. Molecular biology reports, 48(10), 6703–6708. https://doi.org/10.1007/s11033-021-06659-5
MTHFR (rs1801131)
Kvaratskhelia, T., Kvaratskhelia, E., Kankava, K., & Abzianidze, E. (2017). MTHFR GENE C677T POLYMORPHISM AND LEVELS OF DNA METHYLTRASFERASES IN SUBCLINICAL HYPOTHYROIDISM. Georgian medical news, (265), 19–24.
Kvaratskhelia, T., Abzianidze, E., Asatiani, K., Kvintradze, M., Surmava, S., & Kvaratskhelia, E. (2020). Methylenetetrahydrofolate Reductase (MTHFR) C677T and A1298C Polymorphisms in Georgian Females with Hypothyroidism. Global medical genetics, 7(2), 47–50. https://doi.org/10.1055/s-0040-1714091
Abu-Hassan, D. W., Alhouri, A. N., Altork, N. A., Shkoukani, Z. W., Altamimi, T. S., Alqaisi, O. M., & Mustafa, B. (2019). MTHFR gene polymorphisms in hypothyroidism and hyperthyroidism among Jordanian females. Archives of endocrinology and metabolism, 63(3), 280–287. https://doi.org/10.20945/2359-3997000000133
Diekman, M. J., van der Put, N. M., Blom, H. J., Tijssen, J. G., & Wiersinga, W. M. (2001). Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism. Clinical endocrinology, 54(2), 197–204. https://doi.org/10.1046/j.1365-2265.2001.01170.x
PDE8B (rs4704397)
Arnaud-Lopez, L., Usala, G., Ceresini, G., Mitchell, B. D., Pilia, M. G., Piras, M. G., Sestu, N., Maschio, A., Busonero, F., Albai, G., Dei, M., Lai, S., Mulas, A., Crisponi, L., Tanaka, T., Bandinelli, S., Guralnik, J. M., Loi, A., Balaci, L., Sole, G., … Naitza, S. (2008). Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. American journal of human genetics, 82(6), 1270–1280. https://doi.org/10.1016/j.ajhg.2008.04.019
Mansuri, T., Jadeja, S. H. D., Singh, M., Begum, R., & Robin, P. (2020). Phosphodiesterase 8B Polymorphism rs4704397 Is Associated with Infertility in Subclinical Hypothyroid Females: A Case-Control Study. International journal of fertility & sterility, 14(2), 122–128. https://doi.org/10.22074/ijfs.2020.6015
Agretti, P., De Marco, G., Di Cosmo, C., Bagattini, B., Ferrarini, E., Montanelli, L., Vitti, P., & Tonacchera, M. (2014). Frequency and effect on serum TSH of phosphodiesterase 8B (PDE8B) gene polymorphisms in patients with sporadic nonautoimmune subclinical hypothyroidism. Journal of endocrinological investigation, 37(2), 189–194. https://doi.org/10.1007/s40618-013-0036-7
Jorde, R., Schirmer, H., Wilsgaard, T., Joakimsen, R. M., Mathiesen, E. B., Njølstad, I., Løchen, M. L., Figenschau, Y., Svartberg, J., Hutchinson, M. S., Kjærgaard, M., Jørgensen, L., & Grimnes, G. (2014). The phosphodiesterase 8B gene rs4704397 is associated with thyroid function, risk of myocardial infarction, and body height: the Tromsø study. Thyroid : official journal of the American Thyroid Association, 24(2), 215–222. https://doi.org/10.1089/thy.2013.0177
PDE8B (rs6885099)
Agretti, P., De Marco, G., Di Cosmo, C., Bagattini, B., Ferrarini, E., Montanelli, L., Vitti, P., & Tonacchera, M. (2014). Frequency and effect on serum TSH of phosphodiesterase 8B (PDE8B) gene polymorphisms in patients with sporadic nonautoimmune subclinical hypothyroidism. Journal of endocrinological investigation, 37(2), 189–194. https://doi.org/10.1007/s40618-013-0036-7
Porcu, E., Medici, M., Pistis, G., Volpato, C. B., Wilson, S. G., Cappola, A. R., Bos, S. D., Deelen, J., den Heijer, M., Freathy, R. M., Lahti, J., Liu, C., Lopez, L. M., Nolte, I. M., O’Connell, J. R., Tanaka, T., Trompet, S., Arnold, A., Bandinelli, S., Beekman, M., … Naitza, S. (2013). A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS genetics, 9(2), e1003266. https://doi.org/10.1371/journal.pgen.1003266
Arnaud-Lopez, L., Usala, G., Ceresini, G., Mitchell, B. D., Pilia, M. G., Piras, M. G., Sestu, N., Maschio, A., Busonero, F., Albai, G., Dei, M., Lai, S., Mulas, A., Crisponi, L., Tanaka, T., Bandinelli, S., Guralnik, J. M., Loi, A., Balaci, L., Sole, G., … Naitza, S. (2008). Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. American journal of human genetics, 82(6), 1270–1280. https://doi.org/10.1016/j.ajhg.2008.04.019
HLA-DQB1*03 (rs7454108)
Kokaraki, G., Daniilidis, M., Yiangou, M., Arsenakis, M., Karyotis, N., Tsilipakou, M., Fleva, A., Gerofotis, A., Karadani, N., & Yovos, J. G. (2009). Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes‘ associations of Hashimoto’s thyroiditis in a Greek population. Tissue antigens, 73(3), 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x
PTPN22 (rs2476601)
Rydzewska, M., Góralczyk, A., Gościk, J., Wawrusiewicz-Kurylonek, N., Bossowska, A., Krętowski, A., & Bossowski, A. (2018). Analysis of chosen polymorphisms rs2476601 a/G – PTPN22, rs1990760 C/T – IFIH1, rs179247 a/G – TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity, 51(4), 183–190. https://doi.org/10.1080/08916934.2018.1486824
Wu, H., Wan, S., Qu, M., Ren, B., Liu, L., & Shen, H. (2022). The Relationship between PTPN22 R620W Polymorphisms and the Susceptibility to Autoimmune Thyroid Diseases: An Updated Meta-analysis. Immunological investigations, 51(2), 438–451. https://doi.org/10.1080/08820139.2020.1837154
Criswell, L. A., Pfeiffer, K. A., Lum, R. F., Gonzales, B., Novitzke, J., Kern, M., Moser, K. L., Begovich, A. B., Carlton, V. E., Li, W., Lee, A. T., Ortmann, W., Behrens, T. W., & Gregersen, P. K. (2005). Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. American journal of human genetics, 76(4), 561–571. https://doi.org/10.1086/429096
Bulut, F., Erol, D., Elyas, H., Doğan, H., Ozdemir, F. A., & Keskin, L. (2014). Protein Tyrosine Phosphatase Non-receptor 22 Gene C1858T Polymorphism in Patients with Coexistent Type 2 Diabetes and Hashimoto’s Thyroiditis. Balkan medical journal, 31(1), 37–42. https://doi.org/10.5152/balkanmedj.2014.9418
STAT4 (rs7574865)
Park, Y., Lee, H. S., Park, Y., Min, D., Yang, S., Kim, D., & Cho, B. (2011). Evidence for the role of STAT4 as a general autoimmunity locus in the Korean population. Diabetes/metabolism research and reviews, 27(8), 867–871. https://doi.org/10.1002/dmrr.1263
Gao, X., Wang, J., & Yu, Y. (2019). The Association Between STAT4 rs7574865 Polymorphism and the Susceptibility of Autoimmune Thyroid Disease: A Meta-Analysis. Frontiers in genetics, 9, 708. https://doi.org/10.3389/fgene.2018.00708
Yan, N., Meng, S., Zhou, J., Xu, J., Muhali, F. S., Jiang, W., Shi, L., Shi, X., & Zhang, J. (2014). Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population. International journal of molecular sciences, 15(7), 12280–12293. https://doi.org/10.3390/ijms150712280
TLR10 (rs10004195)
Li, M., Han, W., Zhu, L., Jiang, J., Qu, W., Zhang, L., Jia, L., & Zhou, Q. (2019). IRAK2 and TLR10 confer risk of Hashimoto’s disease: a genetic association study based on the Han Chinese population. Journal of human genetics, 64(7), 617–623. https://doi.org/10.1038/s10038-019-0613-5
Cho, W. K., Jang, J. P., Choi, E. J., Jeon, Y. J., Jung, I. A., Kim, S. H., Jung, M. H., Kim, T. G., & Suh, B. K. (2015). Association of Toll-like receptor 10 polymorphisms with autoimmune thyroid disease in Korean children. Thyroid : official journal of the American Thyroid Association, 25(2), 250–255. https://doi.org/10.1089/thy.2014.0135
TNF-Alpha (rs1800629)
Zhu, P., Wu, X., Zhou, J., Wu, K., & Lu, Y. (2021). Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves‘ disease: a meta-analysis. Journal of endocrinological investigation, 44(2), 311–319. https://doi.org/10.1007/s40618-020-01300-x
Tu, Y., Fan, G., Zeng, T., Cai, X., & Kong, W. (2018). Association of TNF-α promoter polymorphism and Graves‘ disease: an updated systematic review and meta-analysis. Bioscience reports, 38(2), BSR20180143. https://doi.org/10.1042/BSR20180143
Li, N., Zhou, Z., Liu, X., Liu, Y., Zhang, J., Du, L., Wei, M., & Chen, X. (2008). Association of tumour necrosis factor alpha (TNF-alpha) polymorphisms with Graves‘ disease: A meta-analysis. Clinical biochemistry, 41(10-11), 881–886. https://doi.org/10.1016/j.clinbiochem.2008.04.014
TSHR (rs12101255)
Gong, J., Jiang, S. J., Wang, D. K., Dong, H., Chen, G., Fang, K., Cui, J. R., & Lu, F. E. (2016). Association of polymorphisms of rs179247 and rs12101255 in thyroid stimulating hormone receptor intron 1 with an increased risk of Graves‘ disease: A meta-analysis. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 36(4), 473–479. https://doi.org/10.1007/s11596-016-1611-x
Qian, W., Xu, K., Jia, W., Lan, L., Zheng, X., Yang, X., & Cui, D. (2016). Association between TSHR gene polymorphism and the risk of Graves‘ disease: a meta-analysis. Journal of biomedical research, 30(6), 466–475. https://doi.org/10.7555/JBR.30.20140144
TPO (rs11675434)
Medici, M., Porcu, E., Pistis, G., Teumer, A., Brown, S. J., Jensen, R. A., Rawal, R., Roef, G. L., Plantinga, T. S., Vermeulen, S. H., Lahti, J., Simmonds, M. J., Husemoen, L. L., Freathy, R. M., Shields, B. M., Pietzner, D., Nagy, R., Broer, L., Chaker, L., Korevaar, T. I., … Peeters, R. P. (2014). Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS genetics, 10(2), e1004123. https://doi.org/10.1371/journal.pgen.1004123
Brčić, L., Barić, A., Gračan, S., Brdar, D., Torlak Lovrić, V., Vidan, N., Zemunik, T., Polašek, O., Barbalić, M., Punda, A., & Boraska Perica, V. (2016). Association of established thyroid peroxidase autoantibody (TPOAb) genetic variants with Hashimoto’s thyroiditis. Autoimmunity, 49(7), 480–485. https://doi.org/10.1080/08916934.2016.1191475
TPO (rs2071403)
Kwak, S. H., Park, Y. J., Go, M. J., Lee, K. E., Kim, S. J., Choi, H. S., Kim, T. H., Choi, S. H., Lim, S., Kim, K. W., Park, D. J., Kim, S. S., Lee, J. Y., Park, K. S., Jang, H. C., & Cho, N. H. (2014). A genome-wide association study on thyroid function and anti-thyroid peroxidase antibodies in Koreans. Human molecular genetics, 23(16), 4433–4442. https://doi.org/10.1093/hmg/ddu145
Tomari, S., Watanabe, M., Inoue, N., Mizuma, T., Yamanaka, C., Hidaka, Y., & Iwatani, Y. (2017). The polymorphisms in the thyroid peroxidase gene were associated with the development of autoimmune thyroid disease and the serum levels of anti-thyroid peroxidase antibody. Endocrine journal, 64(10), 1025–1032. https://doi.org/10.1507/endocrj.EJ17-0191
TSHR (rs179247)
Inoue, N., Watanabe, M., Katsumata, Y., Hidaka, Y., & Iwatani, Y. (2013). Different genotypes of a functional polymorphism of the TSHR gene are associated with the development and severity of Graves‘ and Hashimoto’s diseases. Tissue antigens, 82(4), 288–290. https://doi.org/10.1111/tan.12190
Rydzewska, M., Góralczyk, A., Gościk, J., Wawrusiewicz-Kurylonek, N., Bossowska, A., Krętowski, A., & Bossowski, A. (2018). Analysis of chosen polymorphisms rs2476601 a/G – PTPN22, rs1990760 C/T – IFIH1, rs179247 a/G – TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity, 51(4), 183–190. https://doi.org/10.1080/08916934.2018.1486824
TSHR (rs3783938)
Liu, L., Wu, H. Q., Wang, Q., Zhu, Y. F., Zhang, W., Guan, L. J., & Zhang, J. A. (2012). Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocrine journal, 59(8), 717–723. https://doi.org/10.1507/endocrj.ej12-0024
VDR (rs7975232)
Inoue, N., Watanabe, M., Ishido, N., Katsumata, Y., Kagawa, T., Hidaka, Y., & Iwatani, Y. (2014). The functional polymorphisms of VDR, GC and CYP2R1 are involved in the pathogenesis of autoimmune thyroid diseases. Clinical and experimental immunology, 178(2), 262–269. https://doi.org/10.1111/cei.12420
Zhou, H., Xu, C., & Gu, M. (2009). Vitamin D receptor (VDR) gene polymorphisms and Graves‘ disease: a meta-analysis. Clinical endocrinology, 70(6), 938–945. https://doi.org/10.1111/j.1365-2265.2008.03413.x
Zhou, F., Liang, Z., Wang, X., Tan, G., Wei, W., Zheng, G., Ma, X., Tian, D., Li, H., & Yu, H. (2021). The VDR gene confers a genetic predisposition to Graves‘ disease and Graves‘ ophthalmopathy in the Southwest Chinese Han population. Gene, 793, 145750. https://doi.org/10.1016/j.gene.2021.145750
Ban, Y., Taniyama, M., & Ban, Y. (2000). Vitamin D receptor gene polymorphism is associated with Graves‘ disease in the Japanese population. The Journal of clinical endocrinology and metabolism, 85(12), 4639–4643. https://doi.org/10.1210/jcem.85.12.7038
Stefanić, M., Karner, I., Glavas-Obrovac, L., Papić, S., Vrdoljak, D., Levak, G., & Krstonosić, B. (2005). Association of vitamin D receptor gene polymorphism with susceptibility to Graves‘ disease in Eastern Croatian population: case-control study. Croatian medical journal, 46(4), 639–646.
VDR (rs731236)
Stefanić, M., Karner, I., Glavas-Obrovac, L., Papić, S., Vrdoljak, D., Levak, G., & Krstonosić, B. (2005). Association of vitamin D receptor gene polymorphism with susceptibility to Graves‘ disease in Eastern Croatian population: case-control study. Croatian medical journal, 46(4), 639–646.
Veneti, S., Anagnostis, P., Adamidou, F., Artzouchaltzi, A. M., Boboridis, K., & Kita, M. (2019). Association between vitamin D receptor gene polymorphisms and Graves‘ disease: a systematic review and meta-analysis. Endocrine, 65(2), 244–251. https://doi.org/10.1007/s12020-019-01902-3
Feng, M., Li, H., Chen, S. F., Li, W. F., & Zhang, F. B. (2013). Polymorphisms in the vitamin D receptor gene and risk of autoimmune thyroid diseases: a meta-analysis. Endocrine, 43(2), 318–326. https://doi.org/10.1007/s12020-012-9812-y
VDR (rs2228570)
Wang, X., Cheng, W., Ma, Y., & Zhu, J. (2017). Vitamin D receptor gene FokI but not TaqI, ApaI, BsmI polymorphism is associated with Hashimoto’s thyroiditis: a meta-analysis. Scientific reports, 7, 41540. https://doi.org/10.1038/srep41540
Djurovic, J., Stojkovic, O., Ozdemir, O., Silan, F., Akurut, C., Todorovic, J., Savic, K., & Stamenkovic, G. (2015). Association between FokI, ApaI and TaqI RFLP polymorphisms in VDR gene and Hashimoto’s thyroiditis: preliminary data from female patients in Serbia. International journal of immunogenetics, 42(3), 190–194. https://doi.org/10.1111/iji.12199
Zarrin, R., Bagheri, M., Mehdizadeh, A., Ayremlou, P., & Faghfouri, A. H. (2018). The association of FokI and ApaI polymorphisms in vitamin D receptor gene with autoimmune thyroid diseases in the northwest of Iran. Medical journal of the Islamic Republic of Iran, 32, 4. https://doi.org/10.14196/mjiri.32.4
Lin, W. Y., Wan, L., Tsai, C. H., Chen, R. H., Lee, C. C., & Tsai, F. J. (2006). Vitamin D receptor gene polymorphisms are associated with risk of Hashimoto’s thyroiditis in Chinese patients in Taiwan. Journal of clinical laboratory analysis, 20(3), 109–112. https://doi.org/10.1002/jcla.20110
Ban, Y., Taniyama, M., & Ban, Y. (2001). Vitamin D receptor gene polymorphisms in Hashimoto’s thyroiditis. Thyroid : official journal of the American Thyroid Association, 11(6), 607–608. https://doi.org/10.1089/105072501750302967
Yazici, D., Yavuz, D., Tarcin, O., Sancak, S., Deyneli, O., & Akalin, S. (2013). Vitamin D receptor gene ApaI, TaqI, FokI and BsmI polymorphisms in a group of Turkish patients with Hashimoto’s thyroiditis. Minerva endocrinologica, 38(2), 195–201.
CTLA-4 (rs231775)
Song, Y., Chen, Y., & Xu, Q. (2019). Association among cytotoxic T-lymphocyte antigen 4 gene, rs231775 polymorphism, and recurrent pregnancy loss risk. Bioscience reports, 39(2), BSR20181760. https://doi.org/10.1042/BSR20181760
Gupta, R., Prakash, S., Parveen, F., & Agrawal, S. (2012). Association of CTLA-4 and TNF-α polymorphism with recurrent miscarriage among North Indian women. Cytokine, 60(2), 456–462. https://doi.org/10.1016/j.cyto.2012.05.018
Wang, X., Lin, Q., Ma, Z., Hong, Y., Zhao, A., Di, W., & Lu, P. (2005). Association of the A/G polymorphism at position 49 in exon 1 of CTLA-4 with the susceptibility to unexplained recurrent spontaneous abortion in the Chinese population. American journal of reproductive immunology (New York, N.Y. : 1989), 53(2), 100–105. https://doi.org/10.1111/j.1600-0897.2004.00251.x
CYP1A1 (rs4646903)
Li, J., Chen, Y., Mo, S., & Nai, D. (2017). Potential Positive Association between Cytochrome P450 1A1 Gene Polymorphisms and Recurrent Pregnancy Loss: a Meta-Analysis. Annals of human genetics, 81(4), 161–173. https://doi.org/10.1111/ahg.12196
Suryanarayana, V., Deenadayal, M., & Singh, L. (2004). Association of CYP1A1 gene polymorphism with recurrent pregnancy loss in the South Indian population. Human reproduction (Oxford, England), 19(11), 2648–2652. https://doi.org/10.1093/humrep/deh463
Parveen, F., Faridi, R. M., Das, V., Tripathi, G., & Agrawal, S. (2010). Genetic association of phase I and phase II detoxification genes with recurrent miscarriages among North Indian women. Molecular human reproduction, 16(3), 207–214. https://doi.org/10.1093/molehr/gap096
ESR2 (rs4986938)
Tang, L., Xiang, Q., Xiang, J., & Li, J. (2022). The haplotypes GCA and ACA in ESR1 gene are associated with the susceptibility of recurrent spontaneous abortion (RSA) in Chinese Han: A case-control study and meta-analysis. Medicine, 101(21), e29168. https://doi.org/10.1097/MD.0000000000029168
Mahdavipour, M., Zarei, S., Fatemi, R., Edalatkhah, H., Heidari-Vala, H., Jeddi-Tehrani, M., & Idali, F. (2017). Polymorphisms in the Estrogen Receptor Beta Gene and the Risk of Unexplained Recurrent Spontaneous Abortion. Avicenna journal of medical biotechnology, 9(3), 150–154.
Tang, D., Bao, J., Bai, G., Hao, M., Jin, R., & Liu, F. (2020). The AGT Haplotype of the ESR2 Gene Containing the Polymorphisms rs2077647A, rs4986938G, and rs1256049T Increases the Susceptibility of Unexplained Recurrent Spontaneous Abortion in Women in the Chinese Hui Population. Medical science monitor : international medical journal of experimental and clinical research, 26, e921102. https://doi.org/10.12659/MSM.921102
Hu, J., Wang, J., Xiang, H., Li, Z., Wang, B., Cao, Y., & Ma, X. (2012). Association of polymorphisms in the estrogen receptor β (ESR2) with unexplained recurrent spontaneous abortion (URSA) in Chinese population. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 25(9), 1727–1729. https://doi.org/10.3109/14767058.2012.663021
FII (rs1799963)
Liu, X., Chen, Y., Ye, C., Xing, D., Wu, R., Li, F., Chen, L., & Wang, T. (2021). Hereditary thrombophilia and recurrent pregnancy loss: a systematic review and meta-analysis. Human reproduction (Oxford, England), 36(5), 1213–1229. https://doi.org/10.1093/humrep/deab010
Shi, X., Xie, X., Jia, Y., & Li, S. (2017). Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clinical genetics, 91(2), 265–284. https://doi.org/10.1111/cge.12910
FXIII (rs5985)
Li, J., Wu, H., Chen, Y., Wu, H., Xu, H., & Li, L. (2015). Genetic association between FXIII and β-fibrinogen genes and women with recurrent spontaneous abortion: a meta- analysis. Journal of assisted reproduction and genetics, 32(5), 817–825. https://doi.org/10.1007/s10815-015-0471-9
Shi, X., Xie, X., Jia, Y., & Li, S. (2017). Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clinical genetics, 91(2), 265–284. https://doi.org/10.1111/cge.12910
Jung, J. H., Kim, J. H., Song, G. G., & Choi, S. J. (2017). Association of the F13A1 Val34Leu polymorphism and recurrent pregnancy loss: A meta-analysis. European journal of obstetrics, gynecology, and reproductive biology, 215, 234–240. https://doi.org/10.1016/j.ejogrb.2017.06.032
Elmahgoub, I. R., Afify, R. A., Abdel Aal, A. A., & El-Sherbiny, W. S. (2014). Prevalence of coagulation factor XIII and plasminogen activator inhibitor-1 gene polymorphisms among Egyptian women suffering from unexplained primary recurrent miscarriage. Journal of reproductive immunology, 103, 18–22. https://doi.org/10.1016/j.jri.2014.02.007
FV (rs6025)
Liu, X., Chen, Y., Ye, C., Xing, D., Wu, R., Li, F., Chen, L., & Wang, T. (2021). Hereditary thrombophilia and recurrent pregnancy loss: a systematic review and meta-analysis. Human reproduction (Oxford, England), 36(5), 1213–1229. https://doi.org/10.1093/humrep/deab010
Shi, X., Xie, X., Jia, Y., & Li, S. (2017). Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clinical genetics, 91(2), 265–284. https://doi.org/10.1111/cge.12910
Hamedi, B., Feulefack, J., Khan, A., & Sergi, C. (2020). Association between factor V Leiden mutation and recurrent pregnancy loss in the middle east countries: a Newcastle-Ottawa meta-analysis. Archives of gynecology and obstetrics, 302(2), 345–354. https://doi.org/10.1007/s00404-020-05610-6
GSTM1
Nair, R. R., Khanna, A., & Singh, K. (2013). Association of GSTT1 and GSTM1 polymorphisms with early pregnancy loss in an Indian population and a meta-analysis. Reproductive biomedicine online, 26(4), 313–322. https://doi.org/10.1016/j.rbmo.2012.12.004
Sata, F., Yamada, H., Kondo, T., Gong, Y., Tozaki, S., Kobashi, G., Kato, E. H., Fujimoto, S., & Kishi, R. (2003). Glutathione S-transferase M1 and T1 polymorphisms and the risk of recurrent pregnancy loss. Molecular human reproduction, 9(3), 165–169. https://doi.org/10.1093/molehr/gag021
GSTT1
Nair, R. R., Khanna, A., & Singh, K. (2013). Association of GSTT1 and GSTM1 polymorphisms with early pregnancy loss in an Indian population and a meta-analysis. Reproductive biomedicine online, 26(4), 313–322. https://doi.org/10.1016/j.rbmo.2012.12.004
Parveen, F., Faridi, R. M., Das, V., Tripathi, G., & Agrawal, S. (2010). Genetic association of phase I and phase II detoxification genes with recurrent miscarriages among North Indian women. Molecular human reproduction, 16(3), 207–214. https://doi.org/10.1093/molehr/gap096
Pereza, N., Ostojić, S., Kapović, M., & Peterlin, B. (2017). Systematic review and meta-analysis of genetic association studies in idiopathic recurrent spontaneous abortion. Fertility and sterility, 107(1), 150–159.e2. https://doi.org/10.1016/j.fertnstert.2016.10.007
IL-6 (rs1800796)
Wang, T., Lu, N., Cui, Y., & Tian, L. (2019). Polymorphisms in interleukin genes and their association with the risk of recurrent pregnancy loss. Genes & genetic systems, 94(3), 109–116. https://doi.org/10.1266/ggs.18-00051
Ma, J., Zhang, X., He, G., & Yang, C. (2017). Association between TNF, IL1B, IL6, IL10 and IFNG polymorphisms and recurrent miscarriage: a case control study. Reproductive biology and endocrinology : RB&E, 15(1), 83. https://doi.org/10.1186/s12958-017-0300-3
Wang, T., Lu, N., Cui, Y., & Tian, L. (2019). Polymorphisms in interleukin genes and their association with the risk of recurrent pregnancy loss. Genes & genetic systems, 94(3), 109–116. https://doi.org/10.1266/ggs.18-00051
Saijo, Y., Sata, F., Yamada, H., Konodo, T., Kato, E. H., Kataoka, S., Shimada, S., Morikawa, M., Minakami, H., & Kishi, R. (2004). Interleukin-4 gene polymorphism is not involved in the risk of recurrent pregnancy loss. American journal of reproductive immunology (New York, N.Y. : 1989), 52(2), 143–146. https://doi.org/10.1111/j.1600-0897.2004.00193.x
IL-10 (rs1800896)
Daher, S., Shulzhenko, N., Morgun, A., Mattar, R., Rampim, G. F., Camano, L., & DeLima, M. G. (2003). Associations between cytokine gene polymorphisms and recurrent pregnancy loss. Journal of reproductive immunology, 58(1), 69–77. https://doi.org/10.1016/s0165-0378(02)00059-1
Peng, Z., Lv, X., Sun, Y., & Dai, S. (2016). Association of Interleukin-10-1082A/G Polymorphism with Idiopathic Recurrent Miscarriage: A Systematic Review and Meta-Analysis. American journal of reproductive immunology (New York, N.Y. : 1989), 75(2), 162–171. https://doi.org/10.1111/aji.12467
Su, D., Zhang, Y., Wang, Q., Wang, J., Jiao, B., Wang, G., & Wu, X. (2016). Association of interleukin-10 gene promoter polymorphisms with recurrent miscarriage: a meta-analysis. American journal of reproductive immunology (New York, N.Y. : 1989), 76(2), 172–180. https://doi.org/10.1111/aji.12531
Zhang, M., Xu, J., Bao, X., Niu, W., Wang, L., Du, L., Zhang, N., & Sun, Y. (2017). Association between Genetic Polymorphisms in Interleukin Genes and Recurrent Pregnancy Loss – A Systematic Review and Meta-Analysis. PloS one, 12(1), e0169891. https://doi.org/10.1371/journal.pone.0169891
IL-10 (rs1800871)
Gu, C., Gong, H., Zhang, Z., Yang, Z., & Ma, Y. (2016). Association of interleukin-10 gene promoter polymorphisms with recurrent pregnancy loss: a meta-analysis. Journal of assisted reproduction and genetics, 33(7), 907–917. https://doi.org/10.1007/s10815-016-0699-z
Su, D., Zhang, Y., Wang, Q., Wang, J., Jiao, B., Wang, G., & Wu, X. (2016). Association of interleukin-10 gene promoter polymorphisms with recurrent miscarriage: a meta-analysis. American journal of reproductive immunology (New York, N.Y. : 1989), 76(2), 172–180. https://doi.org/10.1111/aji.12531
Zhang, M., Xu, J., Bao, X., Niu, W., Wang, L., Du, L., Zhang, N., & Sun, Y. (2017). Association between Genetic Polymorphisms in Interleukin Genes and Recurrent Pregnancy Loss – A Systematic Review and Meta-Analysis. PloS one, 12(1), e0169891. https://doi.org/10.1371/journal.pone.0169891
L Bohiltea, C., & E Radoi, V. (2014). Interleukin-6 and interleukin-10 gene polymorphisms and recurrent pregnancy loss in Romanian population. Iranian journal of reproductive medicine, 12(9), 617–622.
IL-18 (rs1946519)
Messaoudi, S., Dandana, M., Magdoud, K., Meddeb, S., Ben Slama, N., Hizem, S., & Mahjoub, T. (2012). Interleukin-18 promoter polymorphisms and risk of idiopathic recurrent pregnancy loss in a Tunisian population. Journal of reproductive immunology, 93(2), 109–113. https://doi.org/10.1016/j.jri.2011.12.002
Al-Khateeb, G. M., Sater, M. S., Finan, R. R., Mustafa, F. E., Al-Busaidi, A. S., Al-Sulaiti, M. A., & Almawi, W. Y. (2011). Analysis of interleukin-18 promoter polymorphisms and changes in interleukin-18 serum levels underscores the involvement of interleukin-18 in recurrent spontaneous miscarriage. Fertility and sterility, 96(4), 921–926. https://doi.org/10.1016/j.fertnstert.2011.06.079
Zhang, M., Xu, J., Bao, X., Niu, W., Wang, L., Du, L., Zhang, N., & Sun, Y. (2017). Association between Genetic Polymorphisms in Interleukin Genes and Recurrent Pregnancy Loss – A Systematic Review and Meta-Analysis. PloS one, 12(1), e0169891. https://doi.org/10.1371/journal.pone.0169891
IL-18 (rs187238)
Salimi, E., Karimi-Zarchi, M., Dastgheib, S. A., Abbasi, H., Tabatabaiee, R. S., Hadadan, A., Amjadi, N., Akbarian-Bafghi, M. J., & Neamatzadeh, H. (2020). Association of Promoter Region Polymorphisms of IL-6 and IL-18 Genes with Risk of Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Fetal and pediatric pathology, 39(4), 346–359. https://doi.org/10.1080/15513815.2019.1652379
Zhang, M., Xu, J., Bao, X., Niu, W., Wang, L., Du, L., Zhang, N., & Sun, Y. (2017). Association between Genetic Polymorphisms in Interleukin Genes and Recurrent Pregnancy Loss – A Systematic Review and Meta-Analysis. PloS one, 12(1), e0169891. https://doi.org/10.1371/journal.pone.0169891
Chen, H., Yang, X., Du, J., & Lu, M. (2015). Interleukin-18 gene polymorphisms and risk of recurrent pregnancy loss: A systematic review and meta-analysis. The journal of obstetrics and gynaecology research, 41(10), 1506–1513. https://doi.org/10.1111/jog.12800
Yue, J., Tong, Y., Xie, L., Ma, T., & Yang, J. (2016). Genetic variant in IL-33 is associated with idiopathic recurrent miscarriage in Chinese Han population. Scientific reports, 6, 23806. https://doi.org/10.1038/srep23806
MMP2 (rs2285053)
Yan, Y., Fang, L., Li, Y., Yu, Y., Li, Y., Cheng, J. C., & Sun, Y. P. (2021). Association of MMP2 and MMP9 gene polymorphisms with the recurrent spontaneous abortion: A meta-analysis. Gene, 767, 145173. https://doi.org/10.1016/j.gene.2020.145173
Pereza, N., Ostojić, S., Volk, M., Kapović, M., & Peterlin, B. (2012). Matrix metalloproteinases 1, 2, 3 and 9 functional single-nucleotide polymorphisms in idiopathic recurrent spontaneous abortion. Reproductive biomedicine online, 24(5), 567–575. https://doi.org/10.1016/j.rbmo.2012.01.008
MTHFR (rs1801133)
Wu, X., Zhao, L., Zhu, H., He, D., Tang, W., & Luo, Y. (2012). Association between the MTHFR C677T polymorphism and recurrent pregnancy loss: a meta-analysis. Genetic testing and molecular biomarkers, 16(7), 806–811. https://doi.org/10.1089/gtmb.2011.0318
Wang, G., Lin, Z., Wang, X., Sun, Q., Xun, Z., Xing, B., & Li, Z. (2021). The association between 5, 10 – methylenetetrahydrofolate reductase and the risk of unexplained recurrent pregnancy loss in China: A Meta-analysis. Medicine, 100(17), e25487. https://doi.org/10.1097/MD.0000000000025487
Du, B., Shi, X., Yin, C., & Feng, X. (2019). Polymorphisms of methalenetetrahydrofolate reductase in recurrent pregnancy loss: an overview of systematic reviews and meta-analyses. Journal of assisted reproduction and genetics, 36(7), 1315–1328. https://doi.org/10.1007/s10815-019-01473-2
Shi, X., Xie, X., Jia, Y., & Li, S. (2017). Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clinical genetics, 91(2), 265–284. https://doi.org/10.1111/cge.12910
MTHFR (rs1801131)
Shi, X., Xie, X., Jia, Y., & Li, S. (2017). Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clinical genetics, 91(2), 265–284. https://doi.org/10.1111/cge.12910
Wang, G., Lin, Z., Wang, X., Sun, Q., Xun, Z., Xing, B., & Li, Z. (2021). The association between 5, 10 – methylenetetrahydrofolate reductase and the risk of unexplained recurrent pregnancy loss in China: A Meta-analysis. Medicine, 100(17), e25487. https://doi.org/10.1097/MD.0000000000025487
Parveen, F., Tuteja, M., & Agrawal, S. (2013). Polymorphisms in MTHFR, MTHFD, and PAI-1 and recurrent miscarriage among North Indian women. Archives of gynecology and obstetrics, 288(5), 1171–1177. https://doi.org/10.1007/s00404-013-2877-x
NOS3 (rs2070744)
Zhao, X., Li, Q., Yu, F., Lin, L., Yin, W., Li, J., & Feng, X. (2019). Gene polymorphism associated with endothelial nitric oxide synthase (4VNTR, G894T, C786T) and unexplained recurrent spontaneous abortion risk: A meta-analysis. Medicine, 98(4), e14175. https://doi.org/10.1097/MD.0000000000014175
Azani, A., Hosseinzadeh, A., Azadkhah, R., Zonouzi, A. A. P., Zonouzi, A. P., Aftabi, Y., Khani, H., Heidary, L., Danaii, S., Bargahi, N., Pouladi, N., & Hosseini, S. M. (2017). Association of endothelial nitric oxide synthase gene variants (-786 T>C, intron 4 b/a VNTR and 894 G>T) with idiopathic recurrent pregnancy loss: A case-control study with haplotype and in silico analysis. European journal of obstetrics, gynecology, and reproductive biology, 215, 93–100. https://doi.org/10.1016/j.ejogrb.2017.05.024
TNF-alpha (rs1800629)
Aslebahar, F., Neamatzadeh, H., Meibodi, B., Karimi-Zarchi, M., Tabatabaei, R. S., Noori-Shadkam, M., Mazaheri, M., & Dehghani-Mohammadabadi, R. (2019). Association of Tumor Necrosis Factor-α (TNF-α) -308G>A and -238G>A Polymorphisms with Recurrent Pregnancy Loss Risk: A Meta-Analysis. International journal of fertility & sterility, 12(4), 284–292. https://doi.org/10.22074/ijfs.2019.5454
Li, H. H., Xu, X. H., Tong, J., Zhang, K. Y., Zhang, C., & Chen, Z. J. (2016). Association of TNF-α genetic polymorphisms with recurrent pregnancy loss risk: a systematic review and meta-analysis. Reproductive biology and endocrinology : RB&E, 14, 6. https://doi.org/10.1186/s12958-016-0140-6
Kim, J. A., Bang, C. H., Song, G. G., Kim, J. H., Choi, S. J., & Jung, J. H. (2020). Tumour necrosis factor alpha gene polymorphisms in women with recurrent pregnancy loss: a meta-analysis. Human fertility (Cambridge, England), 23(3), 159–169. https://doi.org/10.1080/14647273.2018.1543899
TNF-alpha (rs361525)
Zhao, X., Jiang, Y., Ping, Y., Guo, H., He, M., & Feng, X. (2019). Associations between tumor necrosis factor-α and interleukin-6 polymorphisms and unexplained recurrent spontaneous abortion risk: A meta-analysis. Medicine, 98(46), e17919. https://doi.org/10.1097/MD.0000000000017919
Aslebahar, F., Neamatzadeh, H., Meibodi, B., Karimi-Zarchi, M., Tabatabaei, R. S., Noori-Shadkam, M., Mazaheri, M., & Dehghani-Mohammadabadi, R. (2019). Association of Tumor Necrosis Factor-α (TNF-α) -308G>A and -238G>A Polymorphisms with Recurrent Pregnancy Loss Risk: A Meta-Analysis. International journal of fertility & sterility, 12(4), 284–292. https://doi.org/10.22074/ijfs.2019.5454
Gupta, R., Prakash, S., Parveen, F., & Agrawal, S. (2012). Association of CTLA-4 and TNF-α polymorphism with recurrent miscarriage among North Indian women. Cytokine, 60(2), 456–462. https://doi.org/10.1016/j.cyto.2012.05.018
TP53 (rs1042522)
Chen, H., Yang, X., & Wang, Z. (2015). Association between p53 Arg72Pro polymorphism and recurrent pregnancy loss: an updated systematic review and meta-analysis. Reproductive biomedicine online, 31(2), 149–153. https://doi.org/10.1016/j.rbmo.2015.05.003
Shi, X., Xie, X., Jia, Y., & Li, S. (2017). Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clinical genetics, 91(2), 265–284. https://doi.org/10.1111/cge.12910
VEGF (rs2010963)
Xu, X., Du, C., Li, H., Du, J., Yan, X., Peng, L., Li, G., & Chen, Z. J. (2015). Association of VEGF genetic polymorphisms with recurrent spontaneous abortion risk: a systematic review and meta-analysis. PloS one, 10(4), e0123696. https://doi.org/10.1371/journal.pone.0123696
Sun, Y., Chen, M., Mao, B., Cheng, X., Zhang, X., & Xu, C. (2017). Association between vascular endothelial growth factor polymorphism and recurrent pregnancy loss: A systematic review and meta-analysis. European journal of obstetrics, gynecology, and reproductive biology, 211, 169–176. https://doi.org/10.1016/j.ejogrb.2017.03.003
VEGF (rs3025039)
Sun, Y., Chen, M., Mao, B., Cheng, X., Zhang, X., & Xu, C. (2017). Association between vascular endothelial growth factor polymorphism and recurrent pregnancy loss: A systematic review and meta-analysis. European journal of obstetrics, gynecology, and reproductive biology, 211, 169–176. https://doi.org/10.1016/j.ejogrb.2017.03.003
Li, L., Donghong, L., Shuguang, W., Hongbo, Z., Jing, Z., & Shengbin, L. (2013). Polymorphisms in the vascular endothelial growth factor gene associated with recurrent spontaneous miscarriage. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 26(7), 686–690. https://doi.org/10.3109/14767058.2012.746305
miR-27a (rs895819)
Kim, J. O., Ahn, E. H., Sakong, J. H., An, H. J., Park, H. S., Kim, Y. R., Lee, J. R., Lee, W. S., & Kim, N. K. (2020). Association of miR-27aA>G, miR-423C>a, miR-449bA>G, and miR-604A>G Polymorphisms with Risk of Recurrent Implantation Failure. Reproductive sciences (Thousand Oaks, Calif.), 27(1), 29–38. https://doi.org/10.1007/s43032-019-00031-6
Kim, H. I., Choi, E. A., Paik, E. C., Park, S., Hwang, Y. I., Lee, J. H., Seo, S. K., Cho, S., Choi, Y. S., Lee, B. S., Park, J., Lee, S., Lee, K. R., & Yun, B. H. (2022). Identification of Single Nucleotide Polymorphisms as Biomarkers for Recurrent Pregnancy Loss in Korean Women. Journal of Korean medical science, 37(46), e336. https://doi.org/10.3346/jkms.2022.37.e336
MTHFR (rs1801133)
Yang, Y., Luo, Y., Yuan, J., Tang, Y., Xiong, L., Xu, M., Rao, X., & Liu, H. (2016). Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation. Archives of gynecology and obstetrics, 293(6), 1197–1211. https://doi.org/10.1007/s00404-015-3944-2
Safdarian, L., Najmi, Z., Aleyasin, A., Aghahosseini, M., Rashidi, M., & Asadollah, S. (2014). Recurrent IVF failure and hereditary thrombophilia. Iranian journal of reproductive medicine, 12(7), 467–470.
Zeng, H., Hu, L., Xie, H., Ma, W., & Quan, S. (2021). Polymorphisms of vascular endothelial growth factor and recurrent implantation failure: a systematic review and meta-analysis. Archives of gynecology and obstetrics, 304(2), 297–307. https://doi.org/10.1007/s00404-021-06072-0
MTHFR (rs1801131)
Yang, Y., Luo, Y., Yuan, J., Tang, Y., Xiong, L., Xu, M., Rao, X., & Liu, H. (2016). Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation. Archives of gynecology and obstetrics, 293(6), 1197–1211. https://doi.org/10.1007/s00404-015-3944-2
Zeng, H., Hu, L., Xie, H., Ma, W., & Quan, S. (2021). Polymorphisms of vascular endothelial growth factor and recurrent implantation failure: a systematic review and meta-analysis. Archives of gynecology and obstetrics, 304(2), 297–307. https://doi.org/10.1007/s00404-021-06072-0
Enciso, M., Sarasa, J., Xanthopoulou, L., Bristow, S., Bowles, M., Fragouli, E., Delhanty, J., & Wells, D. (2016). Polymorphisms in the MTHFR gene influence embryo viability and the incidence of aneuploidy. Human genetics, 135(5), 555–568. https://doi.org/10.1007/s00439-016-1652-z
TP53 (rs1042522)
Tang, W., Zhou, X., Chan, Y., Wu, X., & Luo, Y. (2011). p53 codon 72 polymorphism and recurrent pregnancy loss: a meta-analysis. Journal of assisted reproduction and genetics, 28(10), 965–969. https://doi.org/10.1007/s10815-011-9618-5
Turienzo, A., Lledó, B., Ortiz, J. A., Morales, R., Sanz, J., Llácer, J., & Bernabeu, R. (2020). Prevalence of candidate single nucleotide polymorphisms on p53, IL-11, IL-10, VEGF and APOE in patients with repeated implantation failure (RIF) and pregnancy loss (RPL). Human fertility (Cambridge, England), 23(2), 117–122. https://doi.org/10.1080/14647273.2018.1524935
Mohammadzadeh, M., Ghorbian, S., & Nouri, M. (2019). Evaluation of clinical utility of P53 gene variations in repeated implantation failure. Molecular biology reports, 46(3), 2885–2891. https://doi.org/10.1007/s11033-019-04748-0
VEGF (rs2010963)
Boudjenah, R., Molina-Gomes, D., Wainer, R., de Mazancourt, P., Selva, J., & Vialard, F. (2012). The vascular endothelial growth factor (VEGF) +405 G/C polymorphism and its relationship with recurrent implantation failure in women in an IVF programme with ICSI. Journal of assisted reproduction and genetics, 29(12), 1415–1420. https://doi.org/10.1007/s10815-012-9878-8
Shim, S. H., Kim, J. O., Jeon, Y. J., An, H. J., Lee, H. A., Kim, J. H., Ahn, E. H., Lee, W. S., & Kim, N. K. (2018). Association between vascular endothelial growth factor promoter polymorphisms and the risk of recurrent implantation failure. Experimental and therapeutic medicine, 15(2), 2109–2119. https://doi.org/10.3892/etm.2017.5641
VEGF (rs833061)
Jung, Y. W., Kim, J. O., Rah, H., Kim, J. H., Kim, Y. R., Lee, Y., Lee, W. S., & Kim, N. K. (2016). Genetic variants of vascular endothelial growth factor are associated with recurrent implantation failure in Korean women. Reproductive biomedicine online, 32(2), 190–196. https://doi.org/10.1016/j.rbmo.2015.10.010
Analysierte Gene
Hicks JK et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective
Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug,98(2):127-34. https://doi.org/10.1002/cpt.147
Stüven et al. Rapid detection of CYP2D6 null alleles by long distance- and multiplex-polymerase chain reaction. Pharmacogenetics. 1996 Oct,6(5):417-21. https://doi.org/10.1097/00008571-199610000-00005
Zhou SF. et al. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet. 2009,48(11):689-723. https://doi.org/10.2165/11318030-000000000-00000
Gatanaga H et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007
Nov 1,45(9):1230-7. https://doi.org/10.1086/522175
Kharasch ED et al. Methadone Pharmacogenetics: CYP2B6 Polymorphisms Determine Plasma Concentrations, Clearance, and Metabolism.
Anesthesiology. 2015 Nov,123(5):1142-53. https://doi.org/10.1097/ALN.0000000000000867
Zanger UM et al. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front
Genet. 2013 Mar 5,4:24. https://doi.org/10.3389/fgene.2013.00024
https://www.pharmgkb.org/gene/PA123
Hubacek JA. et al. Drug metabolising enzyme polymorphisms in Middle- and Eastern-European Slavic populations. Drug Metabol Drug Interact.
2014,29(1):29-36. https://doi.org/10.1515/dmdi-2013-0052
Kuo HW et al. CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions.
Pharmacogenomics. 2013 Jul,14(10):1191-201. https://doi.org/10.2217/pgs.13.105
Lin KM et al. CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics. 2010
Nov,11(11):1535-43. https://doi.org/10.2217/pgs.10.128
Hicks JK et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective
Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug,98(2):127-34. https://doi.org/10.1002/cpt.147
Hodgson K. et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J Psychopharmacol. 2014
Feb,28(2):133-41. https://doi.org/10.1177/0269881113512041
Sheffield L. J. et al. Clinical use of pharmacogenomic tests in 2009. Clin Biochem Rev. 2009 May,30(2):55-65.
Johnson JA et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin
Pharmacol Ther. 2011 Oct,90(4):625-9. https://doi.org/10.1038/clpt.2011.185
Lindh JD et al. Influence of CYP2C9 genotype on warfarin dose requirements–a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009
Apr,65(4):365-75. https://doi.org/10.1007/s00228-008-0584-5
Van Booven D. et al. Cytochrome P450 2C9-CYP2C9 Pharmacogenetics and genomics (2010) https://doi.org/10.1097/FPC.0b013e3283349e84
Chiang TS et al. Enhancement of CYP3A4 Activity in Hep G2 Cells by Lentiviral Transfection of Hepatocyte Nuclear Factor-1 Alpha. PLoS One. 2014 Apr
14,9(4):e94885. https://doi.org/10.1371/journal.pone.0094885
Lee JS et al. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J Physiol Pharmacol. 2013 Dec,17(6):479-84. https://doi.org/10.4196/kjpp.2013.17.6.479
Okubo M et al. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver
microsomes. J Toxicol Sci. 2013,38(3):349-54. https://doi.org/10.2131/jts.38.349
https://www.pharmgkb.org/gene/PA131
KA Birdwell et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin
Pharmacol Ther. 2015 Jul, 98(1): 19–24. https://doi.org/10.1002/cpt.113
Lamba J et al. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics. 2012 Jul,22(7):555-8. https://doi.org/10.1097/FPC.0b013e328351d47f
De Bock L. et al. Quantification of cytochrome 2E1 in human liver microsomes using a validated indirect ELISA. J Pharm Biomed Anal. 2014 Jan
25,88:536-41. https://doi.org/10.1016/j.jpba.2013.09.008
Sheng YJ et al. The association between CYP2E1 polymorphisms and hepatotoxicity due to anti-tuberculosis drugs: A meta-analysis. Infect Genet
Evol. 2014 Jun,24:34-40. https://doi.org/10.1016/j.meegid.2014.01.034
Wang FJ et al. Update meta-analysis of the CYP2E1 RsaI/PstI and DraI polymorphisms and risk of antituberculosis drug-induced hepatotoxicity:
evidence from 26 studies. J Clin Pharm Ther. 2016 Jun,41(3):334-40. https://doi.org/10.1111/jcpt.12388
Barbieri R. B. et al. Genes of detoxification are important modulators of hereditary medullary thyroid carcinoma risk. Clin Endocrinol (Oxf). 2013
Aug,79(2):288-93. https://doi.org/10.1111/cen.12136
Daly A. K. et al. Pharmacogenomics of adverse drug reactions. Genome Med. 2013 Jan 29,5(1):5. https://doi.org/10.1186/gm409
Int. braz j urol. vol.30 no.4 Rio de Janeiro Jul., Aug. 2004, Rama D. Mittal, Daya S.L. Srivastava, Anil Mandhani, https://doi.org/10.1111/cen.12136
Anderson J. L. et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation.
2007 Nov 27,116(22):2563-70 https://doi.org/10.1161/CIRCULATIONAHA.107.737312
Dean L. et al. Warfarin Therapy and the Genotypes CYP2C9 and VKORC1. 2012 Mar 8. Medical Genetics Summaries.
Flockhart D. A. et al. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med. 2008 Feb,10(2):139-50. https://doi.org/10.1097/GIM.0b013e318163c35f
International Warfarin Pharmacogenetics Consortium Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009
Feb 19,360(8):753-64. https://doi.org/10.1056/NEJMoa0809329
Pop TR et al. An acenocoumarol dose algorithm based on a South-Eastern European population. https://doi.org/10.1007/s00228-013-1551-3
Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34
Amstutz U et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and
Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2018 Feb103(2):210-216. https://doi.org/10.1002/cpt.911
Caudle KE et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and
fluoropyrimidine dosing. Clin Pharmacol Ther. 2013 Dec,94(6):640-5. https://doi.org/10.1038/clpt.2013.172
Mattison LK et al. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics.
Pharmacogenomics. 2002 Jul,3(4):485-92. https://doi.org/10.1517/14622416.3.4.485
Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34
Becker et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of
sulfonylurea. Pharmacogenet Genomics. 2008 Jul,18(7):591-7. https://doi.org/10.1097/FPC.0b013e328300e8c5
Tomás M et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. JACC. 2010 Jun
15,55(24):2745-52. https://doi.org/10.1016/j.jacc.2009.12.065
Treuer AV et al. NOS1AP modulates intracellular Ca(2+) in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy. Int J Physiol
Pathophysiol Pharmacol. 2014 Mar 13,6(1):37-46. eCollection 2014.
Ramsey LB et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update.
Clin Pharmacol Ther. 2014 Oct,96(4):423-8. https://doi.org/10.1038/clpt.2014.125
SEARCH Collaborative Group et al. SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med. 2008 Aug 21,359(8):789-99. https://doi.org/10.1056/NEJMoa0801936
Wilke RA et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin
Pharmacol Ther. 2012 Jul,92(1):112-7. https://doi.org/10.1038/clpt.2012.57
Barbarino JM et al. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet Genomics. 2014 Mar,24(3):177-83. https://doi.org/10.1097/FPC.0000000000000024
Gammal RS et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol
Ther. 2016 Apr,99(4):363-9. https://doi.org/10.1002/cpt.269
Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34
Vardhanabhuti S et al. Screening for UGT1A1 Genotype in Study A5257 Would Have Markedly Reduced Premature Discontinuation of Atazanavir for
Hyperbilirubinemia. Open Forum Infect Dis. 2015 Jul 1,2(3):ofv085. https://doi.org/10.1093/ofid/ofv085
Relling MV et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine
dosing: 2018 update. Clin Pharmacol Ther. 2013 Apr,93(4):324-5. https://doi.org/10.1002/cpt.1304
Relling MV et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine
dosing. Clin Pharmacol Ther. 2011 Mar,89(3):387-91. https://doi.org/10.1038/clpt.2010.320
Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34
Analysierte Krankheitsbilder
HTRA1 (rs11200638):
Yang et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006 Nov 10,314(5801):992-3.
Chen et al. Meta-analysis of the association of the HTRA1 polymorphisms with the risk of age-related macular degeneration. Exp Eye Res. 2009 Sep,89(3):292-300.
Dewan et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006 Nov 10,314(5801):989-92.
LOC387715 (rs10490924):
Fritsche et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet. 2008 Jul,40(7):892-6.
Rivera et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005 Nov 1, 14(21):3227-36.
Ross et al. The LOC387715 and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci. 2007,48:1128–1132.
CFH (rs1061170):
Klein et al. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science. Apr 15, 2005, 308(5720): 385–389.
Haines et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005 Apr 15,308(5720):419-21.
Hageman G et al. From The Cover: A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proceedings of the National Academy of Sciences, 102(20), 7227–7232.
Thakkinstian A et al. Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum Mol Genet. 2006 Sep 15,15(18):2784-90. Epub 2006 Aug 11.
Kondo N et al. Complement factor H Y402H variant and risk of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2011 Feb,118(2):339-44.
APOE (rs429358), APOE (rs7412), APOE Typ Kombination (E2/E3/E4):
Bagyinszky E et al. The genetics of Alzheimer’s disease. Clin Interv Aging. 2014 Apr 1,9:535-51. https://doi.org/10.2147/CIA.S51571
Farrer et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997 Oct 22-29,278(16):1349-56.
Jin-Tai Yu et al. Apolipoprotein E in Alzheimer’s Disease: An Update. Annual Review of Neuroscience 2014. https://doi.org/10.1146/annurev-neuro-071013-014300
Liu CC et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013 Feb,9(2):106-18. https://doi.org/10.1038/nrneurol.2012.263
Tang et al. The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA. 1998 Mar 11,279(10):751-5. https://doi.org/10.1001/jama.279.10.751
FGFR2 (rs2981582):
A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Hunter DJ et al, Nat Genet. 2007 Jul,39(7):870-4. Epub 2007 May 27
Low penetrance breast cancer predisposition SNPs are site specific. Mcinerney et al. Breast Cancer Res Treat. 2009 Sep,117(1):151-9. Epub 2008 Nov 13.
Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. Garcia-Closas et al. PLoS Genet. 2008 Apr 25,4(4):e1000054.
Common Genetic Variants Associated with Breast Cancer and Mammographic Density Measures That Predict Disease. Cancer Res 2010,70:1449-1458. February 9, 2010.
VDR (rs2228570):
Anderson et al. Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol Biomarkers Prev. 2011 Aug,20(8):1708-17
McKay et al. Vitamin D receptor polymorphisms and breast cancer risk: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium.Cancer Epidemiol Biomarkers Prev. 2009 Jan,18(1):297-305.
Barroso et al. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case-control studies. BMC Cancer. 2008 Dec 23,8:385.
8Q24 (rs13281615):
Garcia-Closas et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet. 2008 Apr 25
Mcinerney et al. Low penetrance breast cancer predisposition SNPs are site specific. Breast Cancer Res Treat. 2009 Sep,117(1):151-9.
Odefrey et al. Common Genetic Variants Associated with Breast Cancer and Mammographic Density Measures That Predict Disease. Cancer Res 2010,70:1449-1458.
TNRC9 (rs3803662):
Stacey et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2007 Jul,39(7):865-9.
Mcinerney et al. Low penetrance breast cancer predisposition SNPs are site specific. Breast Cancer Res Treat. 2009 Sep,117(1):151-9.
Garcia-Closas et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet. 2008 Apr 25
MAP3K1 (rs889312):
Huijts et al. Clinical correlates of low-risk variants in FGFR2, TNRC9, MAP3K1, LSP1 and 8q24 in a Dutch cohort of incident breast cancer cases. Breast Cancer Research 2007, 9:R78
Couch et al. Association of Breast Cancer Susceptibility Variants with Risk of Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev. 2009 November 18(11): 3044–3048.
Easton et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007 June 28, 447(7148): 1087–1093.
LSP1 (rs3817198):
Odefrey et al. Common Genetic Variants Associated with Breast Cancer and Mammographic Density Measures That Predict Disease. Cancer Res 2010,70:1449-1458.
Long et al. Evaluation of Breast Cancer Susceptibility Loci in Chinese Women. Cancer Epidemiol Biomarkers Prev. 2010 September 19(9): 2357–2365.
Easton et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007 June 28, 447(7148): 1087–1093.
CASP8 (rs1045485):
Cox et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007 Mar,39(3):352-8. Epub 2007 Feb 11.
Shepard et al. A breast cancer risk haplotype in the caspase-8 gene. Cancer Res. 2009 April 1 69(7): 2724–2728.
Couch et al. Association of Breast Cancer Susceptibility Variants with Risk of Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev. 2009 November 18(11): 3044–3048.
2Q35 (rs13387042):
Reeves et al. Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA. 2010 Jul 28,304(4):426-34.
Stacey et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2007 Jul,39(7):865-9.
Odefrey et al. Common Genetic Variants Associated with Breast Cancer and Mammographic Density Measures That Predict Disease. Cancer Res 2010,70:1449-1458.
XRCC2 (rs3218536):
Lin et al. A role for XRCC2 gene polymorphisms in breast cancer risk and survival. J Med Genet. Author manuscript, available in PMC Feb 24, 2014.
Silva et al. Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol. 2010 Feb,34(1):85-92.
Pooley et al. Common single-nucleotide polymorphisms in DNA double-strand break repair genes and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2008 Dec,17(12):3482-9.
CASC8 (rs6983267):
Abulí A et al. Susceptibility genetic variants associated with colorectal cancer risk correlate with cancer phenotype. Gastroenterology. 2010 Sep,139(3):788-96, 796.e1-6. https://doi.org/10.1053/j.gastro.2010.05.072
Berndt SI et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet. 2008 Sep 1,17(17):2665-72. https://doi.org/10.1093/hmg/ddn166
Cicek MS et al. Functional and clinical significance of variants localized to 8q24 in colon cancer. Cancer Epidemiol Biomarkers Prev. 2009 Sep,18(9):2492-500. https://doi.org/10.1158/1055-9965.EPI-09-0362
Cui R et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut. 2011 Jun,60(6):799-805. https://doi.org/10.1136/gut.2010.215947
Curtin K et al. Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev. 2009 Feb,18(2):616-21. https://doi.org/10.1158/1055-9965.EPI-08-0690
Haerian MS et al. Association of 8q24.21 loci with the risk of colorectal cancer: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2011 Oct,26(10):1475-84. https://doi.org/10.1111/j.1440-1746.2011.06831.x
He J et al. Generalizability and epidemiologic characterization of eleven colorectal cancer GWAS hits in multiple populations. Cancer Epidemiol Biomarkers Prev. 2011 Jan,20(1):70-81. https://doi.org/10.1158/1055-9965.EPI-10-0892
Hutter CM et al. Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer. 2010 Dec 4,10:670. https://doi.org/10.1186/1471-2407-10-670
Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015.
Li M et al. Genetic variants on chromosome 8q24 and colorectal neoplasia risk: a case-control study in China and a meta-analysis of the published literature. PLoS One. 2011 Mar 24,6(3):e18251. https://doi.org/10.1371/journal.pone.0018251
Matsuo K et al. Association between an 8q24 locus and the risk of colorectal cancer in Japanese. BMC Cancer. 2009 Oct 26,9:379. https://doi.org/10.1186/1471-2407-9-379
Montazeri Z et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. Int J Epidemiol. 2016 Feb,45(1):186-205. https://doi.org/10.1093/ije/dyv185
Nan H et al. Aspirin use, 8q24 single nucleotide polymorphism rs6983267, and colorectal cancer according to CTNNB1 alterations. J Natl Cancer Inst. 2013 Dec 18,105(24):1852-61. https://doi.org/10.1093/jnci/djt331
Poynter JN et al. Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res. 2007 Dec 1,67(23):11128-32. https://doi.org/10.1158/0008-5472.CAN-07-3239
Schafmayer C et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int J Cancer. 2009 Jan 1,124(1):75-80. https://doi.org/10.1002/ijc.23872
von Holst S et al. Association studies on 11 published colorectal cancer risk loci. Br J Cancer. 2010 Aug 10,103(4):575-80. https://doi.org/10.1038/sj.bjc.6605774
Xiong F et al. Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2010 Jul,19(7):1855-61. https://doi.org/10.1158/1055-9965.EPI-10-0210
Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884
CASC8 (rs10505477):
Gruber SB et al. Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol Ther. 2007 Jul,6(7):1143-7. https://doi.org/10.4161/cbt.6.7.4704
Hutter CM et al. Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer. 2010 Dec 4,10:670. https://doi.org/10.1186/1471-2407-10-670
Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015.
Real LM et al. A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis. PLoS One. 2014 Jun 30,9(6):e101178. https://doi.org/10.1371/journal.pone.0101178
Schafmayer C et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int J Cancer. 2009 Jan 1,124(1):75-80. https://doi.org/10.1002/ijc.23872
Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. https://doi.org/10.18632/oncotarget.12750
Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884
CASC8 (rs10808555):
Berndt SI et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet. 2008 Sep 1,17(17):2665-72. https://doi.org/10.1093/hmg/ddn166
Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663.
Yang B et al. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol Carcinog. 2014 Feb,53 Suppl 1:E187-92. https://doi.org/10.1002/mc.22047
CASC8 (rs7837328):
Berndt SI et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet. 2008 Sep 1,17(17):2665-72. https://doi.org/10.1093/hmg/ddn166
Cui R et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut. 2011 Jun,60(6):799-805. https://doi.org/10.1136/gut.2010.215947
Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015.
Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. https://doi.org/10.18632/oncotarget.12750
Yang B et al. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol Carcinog. 2014 Feb,53 Suppl 1:E187-92. https://doi.org/10.1002/mc.22047
Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884
CASC8 (rs7014346):
Kupfer SS et al. Genetic heterogeneity in colorectal cancer associations between African and European americans. Gastroenterology. 2010 Nov,139(5):1677-85, 1685.e1-8. https://doi.org/10.1053/j.gastro.2010.07.038
Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015.
Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. https://doi.org/10.18632/oncotarget.12750
Tenesa A et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008 May,40(5):631-7. https://doi.org/10.1038/ng.133
Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884
CCND1 (rs9344):
Grünhage F et al. Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes. Int J Colorectal Dis. 2008 Feb,23(2):147-54. Epub 2007 Oct 25. https://doi.org/10.1007/s00384-007-0388-6.
Le Marchand L et al. Association of the cyclin D1 A870G polymorphism with advanced colorectal cancer. JAMA. 2003 Dec 3,290(21):2843-8.
Porter TR et al. Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer. Oncogene. 2002 Mar 14,21(12):1928-33. https://doi.org/10.1007/s13277-014-2505-9
Probst-Hensch NM et al. The effect of the cyclin D1 (CCND1) A870G polymorphism on colorectal cancer risk is modified by glutathione-S-transferase polymorphisms and isothiocyanate intake in the Singapore Chinese Health Study. Carcinogenesis. 2006 Dec,27(12):2475-82. Epub 2006 Jul 8. https://doi.org/10.1093/carcin/bgl116
Qiu H et al. Investigation of cyclin D1 rs9344 G>A polymorphism in colorectal cancer: a meta-analysis involving 13,642 subjects. Onco Targets Ther. 2016 Oct 27,9:6641-6650. eCollection 2016. https://doi.org/10.2147/OTT.S116258
Xu XM et al. CCND1 G870A polymorphism and colorectal cancer risk: An updated meta-analysis. Mol Clin Oncol. 2016 Jun,4(6):1078-1084. Epub 2016 Apr 4. https://doi.org/10.3892/mco.2016.844
Yang J et al. CCND1 G870A polymorphism is associated with increased risk of colorectal cancer, especially for sporadic colorectal cancer and in Caucasians: a meta-analysis. Clin Res Hepatol Gastroenterol. 2012 Apr,36(2):169-77. https://doi.org/10.1016/j.clinre.2011.11.007
Yang Y et al. Cyclin D1 G870A polymorphism contributes to colorectal cancer susceptibility: evidence from a systematic review of 22 case-control studies. PLoS One. 2012,7(5):e36813. https://doi.org/10.1371/journal.pone.0036813
Zahary MN et al. Polymorphisms of cell cycle regulator genes CCND1 G870A and TP53 C215G: Association with colorectal cancer susceptibility risk in a Malaysian population. Oncol Lett. 2015 Nov,10(5):3216-3222. Epub 2015 Sep 18. https://doi.org/10.3892/ol.2015.3728
Zhang LQ et al. Cyclin D1 G870A polymorphism and colorectal cancer susceptibility: a meta-analysis of 20 populations. Int J Colorectal Dis. 2011 Oct,26(10):1249-55. https://doi.org/10.1007/s00384-011-1220-x
Zhang W et al. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics. 2006 Jul,16(7):475-83. https://doi.org/10.1097/01.fpc.0000220562.67595.a5
CDH1 (rs16260):
Grünhage F et al. Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes. Int J Colorectal Dis. 2008 Feb,23(2):147-54. Epub 2007 Oct 25. https://doi.org/10.1007/s00384-007-0388-6
Pittman AM et al. The CDH1-160C>A polymorphism is a risk factor for colorectal cancer. Int J Cancer. 2009 Oct 1,125(7):1622-1625. https://doi.org/10.1002/ijc.24542
Wang Y et al. E-cadherin (CDH1) gene promoter polymorphism and the risk of colorectal cancer : a meta-analysis. Int J Colorectal Dis. 2012 Feb,27(2):151-8. https://doi.org/10.1007/s00384-011-1320-7
COLCA (rs3802842):
Giráldez MD et al. Susceptibility genetic variants associated with early-onset colorectal cancer. Carcinogenesis. 2012 Mar,33(3):613-9. https://doi.org/10.1093/carcin/bgs009
He J et al. Generalizability and epidemiologic characterization of eleven colorectal cancer GWAS hits in multiple populations. Cancer Epidemiol Biomarkers Prev. 2011 Jan,20(1):70-81. https://doi.org/10.1158/1055-9965.EPI-10-0892
Li FX et al. Single-nucleotide polymorphism associations for colorectal cancer in southern chinese population. Chin J Cancer Res. 2012 Mar,24(1):29-35. https://doi.org/10.1007/s11670-012-0029-7
Niittymäki I et al. Low-penetrance susceptibility variants in familial colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2010 Jun,19(6):1478-83. https://doi.org/10.1158/1055-9965.EPI-09-1320
Talseth-Palmer BA et al. Colorectal cancer susceptibility loci on chromosome 8q23.3 and 11q23.1 as modifiers for disease expression in Lynch syndrome. J Med Genet. 2011 Apr,48(4):279-84. https://doi.org/10.1136/jmg.2010.079962
Tenesa A et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008 May,40(5):631-7. https://doi.org/10.1038/ng.133
Xiong F et al. Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2010 Jul,19(7):1855-61. https://doi.org/10.1093/carcin/bgt082
CYP1A1 (rs1048943):
Gil J et al. CYP1A1 Ile462Val polymorphism and colorectal cancer risk in Polish patients. Med Oncol. 2014 Jul,31(7):72.
Hou L et al. CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis. 2005 Jun,26(6):1122-8. Epub 2005 Feb 24. https://doi.org/10.1093/carcin/bgi054
Jin JQ et al. CYP1A1 Ile462Val polymorphism contributes to colorectal cancer risk: a meta-analysis. World J Gastroenterol. 2011 Jan 14,17(2):260-6. https://doi.org/10.3748/wjg.v17.i2.260
Kiss I et al. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes. Anticancer Res. 2000 Jan-Feb,20(1B):519-22.
Pande M et al. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol Biomarkers Prev. 2008 Sep,17(9):2393-401. https://doi.org/10.1158/1055-9965.EPI-08-0326
Pereira Serafim PV et al. Relationship between genetic polymorphism of CYP1A1 at codon 462 (Ile462Val) in colorectal cancer. Int J Biol Markers. 2008 Jan-Mar,23(1):18-23. https://doi.org/10.1177/172460080802300103
Xu L et al. Association between CYP1A1 2454A > G polymorphism and colorectal cancer risk: A meta-analysis. J Cancer Res Ther. 2015 Oct Dec,11(4):760-4. https://doi.org/10.4103/0973-1482.160909
Yeh CC et al. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci. 2007 Mar,14(2):183-93. Epub 2006 Dec 27.
Zheng Y et al. Association between CYP1A1 polymorphism and colorectal cancer risk: a meta-analysis. Mol Biol Rep. 2012 Apr,39(4):3533-40. https://doi.org/10.1007/s11033-011-1126-2
Zhu X et al. Associations between CYP1A1 rs1048943 A > G and rs4646903 T > C genetic variations and colorectal cancer risk: Proof from 26 case-control studies. Oncotarget. 2016 Aug 9,7(32):51365-51374. https://doi.org/10.18632/oncotarget.10331
DNMT3B (rs1569686):
Bao Q et al. Correlation between polymorphism in the promoter of DNA methyltransferase-3B and the risk of colorectal cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2012 Jan,46(1):53-7.
Bao Q et al. Genetic variation in the promoter of DNMT3B is associated with the risk of colorectal cancer. Int J Colorectal Dis. 2011 Sep,26(9):1107-12. https://doi.org/10.1007/s00384-011-1199-3
Daraei A et al. DNA-methyltransferase 3B 39179 G > T polymorphism and risk of sporadic colorectal cancer in a subset of Iranian population. J Res Med Sci. 2011 Jun,16(6):807-13.
Duan F et al. Systematic evaluation of cancer risk associated with DNMT3B polymorphisms. J Cancer Res Clin Oncol. 2015 Jul,141(7):1205-20. https://doi.org/10.1007/s00432-014-1894-x
Fan H et al. Promoter polymorphisms of DNMT3B and the risk of colorectal cancer in Chinese: a case-control study. J Exp Clin Cancer Res. 2008 Jul 28,27:24. https://doi.org/10.1186/1756-9966-27-24
Guo X et al. Association of the DNMT3B polymorphism with colorectal adenomatous polyps and adenocarcinoma. Mol Biol Rep. 2010 Jan,37(1):219-25. https://doi.org/10.1007/s11033-009-9626-z
Ho V et al. Genetic and epigenetic variation in the DNMT3B and MTHFR genes and colorectal adenoma risk. Environ Mol Mutagen. 2016 May,57(4):261-8. https://doi.org/10.1002/em.22010
Hong YS et al. DNMT3b 39179GT polymorphism and the risk of adenocarcinoma of the colon in Koreans. Biochem Genet. 2007 Apr,45(3-4):155-63. Epub 2007 Feb 23. https://doi.org/10.1007/s10528-006-9047-9
Khoram-Abadi KM et al. DNMT3B -149 C>T and -579 G>T Polymorphisms and Risk of Gastric and Colorectal Cancer: a Meta-analysis. Asian Pac J Cancer Prev. 2016,17(6):3015-20.
Zhang Y et al. Association of DNMT3B -283 T > C and -579 G > T polymorphisms with decreased cancer risk: evidence from a meta-analysis. Int J Clin Exp Med. 2015 Aug 15,8(8):13028-38. eCollection 2015.
Zhu S et al. DNMT3B polymorphisms and cancer risk: a meta analysis of 24 case-control studies. Mol Biol Rep. 2012 Apr,39(4):4429-37.
GREM1 (rs10318):
Kupfer SS et al. Genetic heterogeneity in colorectal cancer associations between African and European americans. Gastroenterology. 2010 Nov,139(5):1677-85, 1685.e1-8. https://doi.org/10.1053/j.gastro.2010.07.038
Kupfer SS et al. Shared and independent colorectal cancer risk alleles in TGFβ-related genes in African and European Americans. Carcinogenesis. 2014 Sep,35(9):2025-30. https://doi.org/10.1093/carcin/bgu088
Tu L et al. Common genetic variants (rs4779584 and rs10318) at 15q13.3 contributes to colorectal adenoma and colorectal cancer susceptibility: evidence based on 22 studies. Mol Genet Genomics. 2015 Jun,290(3):901-12. https://doi.org/10.1007/s00438-014-0970-x
IL8 (rs4073):
Bondurant KL et al. Interleukin genes and associations with colon and rectal cancer risk and overall survival. Int J Cancer. 2013 Feb 15,132(4):905-15. https://doi.org/10.1002/ijc.27660
Gunter MJ et al. Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2006 Jun,15(6):1126-31. . https://doi.org/10.1158/1055-9965.EPI-06-0042
Küry S et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. BMC Cancer. 2008 Nov 7,8:326. https://doi.org/10.1186/1471-2407-8-326
Walczak A et al. The lL-8 and IL-13 gene polymorphisms in inflammatory bowel disease and colorectal cancer. DNA Cell Biol. 2012 Aug,31(8):1431-8. https://doi.org/10.1089/dna.2012.1692
IL10 (rs1800872):
Cacev T et al. Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis. 2008 Aug,29(8):1572-80. https://doi.org/10.1093/carcin/bgn164
Cai J et al. An Analysis of IL-10/IL-10R Genetic Factors Related to Risk of Colon Cancer and Inflammatory Bowel Disease in a Han Chinese Population. Clin Lab. 2016,62(6):1147-54. https://doi.org/10.7754/clin.lab.2015.151120
Shi YH et al. The association of three promoter polymorphisms in interleukin-10 gene with the risk for colorectal cancer and hepatocellular carcinoma: A meta-analysis. Sci Rep. 2016 Aug 4,6:30809. https://doi.org/10.1038/srep30809
Yu Y et al. Polymorphisms of inflammation-related genes and colorectal cancer risk: a population-based case-control study in China. Int J Immunogenet. 2014 Aug,41(4):289-97. https://doi.org/10.1111/iji.12119
Zhang YM et al. Meta-analysis of epidemiological studies of association of two polymorphisms in the interleukin-10 gene promoter and colorectal cancer risk. Genet Mol Res. 2012 Sep 25,11(3):3389-97. https://doi.org/10.4238/2012.September.25.7
MTHFR (rs1801133):
Delgado-Plasencia L et al. Impact of the MTHFR C677T polymorphism on colorectal cancer in a population with low genetic variability. Int J Colorectal Dis. 2013 Sep,28(9):1187-93.
Fernández-Peralta AM et al. Association of polymorphisms MTHFR C677T and A1298C with risk of colorectal cancer, genetic and epigenetic characteristic of tumors, and response to chemotherapy. Int J Colorectal Dis. 2010 Feb,25(2):141-51.
Gallegos-Arreola MP et al. Association of the 677C –>T polymorphism in the MTHFR gene with colorectal cancer in Mexican patients. Cancer Genomics Proteomics. 2009 May-Jun,6(3):183-8.
Guo XP et al. Association of MTHFR C677T polymorphisms and colorectal cancer risk in Asians: evidence of 12,255 subjects. Clin Transl Oncol. 2014 Jul,16(7):623-9. https://doi.org/10.1007/s12094-013-1126-x
Huang Y et al. Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet. 2007,52(1):73-85. Epub 2006 Nov 7. https://doi.org/10.1007/s10038-006-0082-5
Hubner RA et al. MTHFR C677T and colorectal cancer risk: A meta-analysis of 25 populations. Int J Cancer. 2007 Mar 1,120(5):1027-35. https://doi.org/10.1002/ijc.22440
Jiang Q et al. Diets, polymorphisms of methylenetetrahydrofolate reductase, and the susceptibility of colon cancer and rectal cancer. Cancer Detect Prev. 2005,29(2):146-54. https://doi.org/10.1016/j.cdp.2004.11.004
Kim J et al. Dietary intake of folate and alcohol, MTHFR C677T polymorphism, and colorectal cancer risk in Korea. Am J Clin Nutr. 2012 Feb,95(2):405-12. https://doi.org/10.3945/ajcn.111.020255
Koushik A et al. Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006 Dec,15(12):2408-17. https://doi.org/10.1158/1055-9965.EPI-06-0624
Le Marchand L et al. The MTHFR C677T polymorphism and colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2005 May,14(5):1198-203. https://doi.org/10.1158/1055-9965.EPI-04-0840
Li H et al. Methylenetetrahydrofolate reductase genotypes and haplotypes associated with susceptibility to colorectal cancer in an eastern Chinese Han population. Genet Mol Res. 2011 Dec 14,10(4):3738-46. https://doi.org/10.4238/2011.December.14.8
Miao XP et al. Association between genetic variations in methylenetetrahydrofolate reductase and risk of colorectal cancer in a Chinese population. Zhonghua Yu Fang Yi Xue Za Zhi. 2005 Nov,39(6):409-11.
Pardini B et al. MTHFR and MTRR genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from the Czech Republic. Mutat Res. 2011 Mar 18,721(1):74-80. https://doi.org/10.1016/j.mrgentox.2010.12.008
Shiao SP et al. Meta-Prediction of MTHFR Gene Polymorphism Mutations and Associated Risk for Colorectal Cancer. Biol Res Nurs. 2016 Jul,18(4):357-69. https://doi.org/10.1177/1099800415628054
Sheng X et al. MTHFR C677T polymorphism contributes to colorectal cancer susceptibility: evidence from 61 case-control studies. Mol Biol Rep. 2012 Oct,39(10):9669-79. https://doi.org/10.1007/s11033-012-1832-4
Teng Z et al. The 677C>T (rs1801133) polymorphism in the MTHFR gene contributes to colorectal cancer risk: a meta-analysis based on 71 research studies. PLoS One. 2013,8(2):e55332. https://doi.org/10.1371/journal.pone.0055332
Ulvik A et al. Colorectal cancer and the methylenetetrahydrofolate reductase 677C -> T and methionine synthase 2756A -> G polymorphisms: a study of 2,168 case-control pairs from the JANUS cohort. Cancer Epidemiol Biomarkers Prev. 2004 Dec,13(12):2175-80.
Xie SZ et al. Association between the MTHFR C677T polymorphism and risk of cancer: evidence from 446 case-control studies. Tumour Biol. 2015 Nov,36(11):8953-72. https://doi.org/10.1007/s13277-015-3648-z
Yang Z et al. MTHFR C677T polymorphism and colorectal cancer risk in Asians, a meta-analysis of 21 studies. Asian Pac J Cancer Prev. 2012,13(4):1203-8. https://doi.org/10.7314/apjcp.2012.13.4.1203
Yin G et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 2004 Nov,95(11):908-13. https://doi.org/10.1111/j.1349-7006.2004.tb02201.x
Yousef AM et al. Allele and genotype frequencies of the polymorphic methylenetetrahydrofolate reductase and colorectal cancer among Jordanian population. Asian Pac J Cancer Prev. 2013,14(8):4559-65. https://doi.org/10.7314/apjcp.2013.14.8.4559
Zhao Met al. Association of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms with colorectal cancer risk: A meta-analysis. Biomed Rep. 2013 Sep,1(5):781-791. Epub 2013 Jul 15. https://doi.org/10.3892/br.2013.134
Zhou D et al. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci. 2012,8(6):819-30. https://doi.org/10.7150/ijbs.4462
Zhong S et al. Quantitative assessment of the association between MTHFR C677T polymorphism and colorectal cancer risk in East Asians. Tumour Biol. 2012 Dec,33(6):2041-51. https://doi.org/10.1007/s13277-012-0463-7
MTRR (rs1801394):
Guimarães JL et al. Gene polymorphisms involved in folate and methionine metabolism and increased risk of sporadic colorectal adenocarcinoma. Tumour Biol. 2011 Oct,32(5):853-61. https://doi.org/10.1007/s13277-011-0185-2
Han D et al. Methionine synthase reductase A66G polymorphism contributes to tumor susceptibility: evidence from 35 case-control studies. Mol Biol Rep. 2012 Feb,39(2):805-16 https://doi.org/10.1007/s11033-011-0802-6
Matsuo K et al. Methionine Synthase Reductase Gene A66G Polymorphism is Associated with Risk of Colorectal Cancer. Asian Pac J Cancer Prev. 2002,3(4):353-359.
Pardini B et al. MTHFR and MTRR genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from the Czech Republic. Mutat Res. 2011 Mar 18,721(1):74-80. https://doi.org/10.1016/j.mrgentox.2010.12.008
Wu PP et al. A meta-analysis of MTRR A66G polymorphism and colorectal cancer susceptibility. J BUON. 2015 May-Jun,20(3):918-22.
Zhou D et al. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci. 2012,8(6):819-30.
SMAD7 (rs12953717):
Ho JW et al. Replication study of SNP associations for colorectal cancer in Hong Kong Chinese. Br J Cancer. 2011 Jan 18,104(2):369-75. https://doi.org/10.1038/sj.bjc.6605977
Jiang X et al. Genetic variations in SMAD7 are associated with colorectal cancer risk in the colon cancer family registry. PLoS One. 2013,8(4):e60464. https://doi.org/10.1371/journal.pone.0060464
Li X et al. A risk-associated single nucleotide polymorphism of SMAD7 is common to colorectal, gastric, and lung cancers in a Han Chinese population. Mol Biol Rep. 2011 Nov,38(8):5093-7. https://doi.org/10.1007/s11033-010-0656-3
Thompson CL et al. Association of common genetic variants in SMAD7 and risk of colon cancer. Carcinogenesis. 2009 Jun,30(6):982-6. https://doi.org/10.1093/carcin/bgp086
Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/md.0000000000001884
TGFB1 (rs1800469):
Amirghofran Z et al. Genetic polymorphism in the transforming growth factor beta1 gene (-509 C/T and -800 G/A) and colorectal cancer. Cancer Genet Cytogenet. 2009 Apr 1,190(1):21-5. https://doi.org/10.1016/j.cancergencyto.2008.11.010
Chung SJ et al. Transforming growth factor-[beta]1 -509T reduces risk of colorectal cancer, but not adenoma in Koreans. Cancer Sci. 2007 Mar,98(3):401-4. https://doi.org/10.1007/s12032-009-9383-9
Fang F et al. TGFB1 509 C/T polymorphism and colorectal cancer risk: a meta-analysis. Med Oncol. 2010 Dec,27(4):1324-8. https://doi.org/10.1007/s12032-009-9383-9
Liu Y et al. Meta-analyses of the associations between four common TGF-β1 genetic polymorphisms and risk of colorectal tumor. Tumour Biol. 2012 Aug,33(4):1191-9. https://doi.org/10.1007/s13277-012-0364-9
Slattery ML et al. Genetic variation in the TGF-β signaling pathway and colon and rectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2011 Jan,20(1):57-69.
Wang Y et al. An updated meta-analysis on the association of TGF-β1 gene promoter -509C/T polymorphism with colorectal cancer risk. Cytokine. 2013 Jan,61(1):181-7. https://doi.org/10.1016/j.cyto.2012.09.014
Zhang Y et al. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in China. Cancer Lett. 2009 Mar 8,275(1):102-8. https://doi.org/10.1016/j.canlet.2008.10.017
BDNF (rs6265):
Losenkov IS, Mulder NJV, Levchuk LA, et al. Association Between BDNF Gene Variant Rs6265 and the Severity of Depression in Antidepressant Treatment-Free Depressed Patients. Front Psychiatry. 2020;11:38. Published 2020 Feb 12. doi:10.3389/fpsyt.2020.00038
Jin MJ, Jeon H, Hyun MH, Lee SH. Influence of childhood trauma and brain-derived neurotrophic factor Val66Met polymorphism on posttraumatic stress symptoms and cortical thickness. Sci Rep. 2019;9(1):6028. Published 2019 Apr 15. doi:10.1038/s41598-019-42563-6
Dooley LN, Ganz PA, Cole SW, Crespi CM, Bower JE. Val66Met BDNF polymorphism as a vulnerability factor for inflammation-associated depressive symptoms in women with breast cancer. J Affect Disord. 2016;197:43-50. doi:10.1016/j.jad.2016.02.059
Vinnik T, Kirby M, Bairachnaya M, et al. Seasonality and BDNF polymorphism influences depression outcome in patients with atopic dermatitis and psoriasis. World J Biol Psychiatry. 2017;18(8):604-614. doi:10.1080/15622975.2016.1212171
Kang HJ, Bae KY, Kim SW, et al. BDNF val66met polymorphism and depressive disorders in patients with acute coronary syndrome. J Affect Disord. 2016;194:1-8. doi:10.1016/j.jad.2016.01.033
Gujral S, Manuck SB, Ferrell RE, Flory JD, Erickson KI. The BDNF Val66Met polymorphism does not moderate the effect of self-reported physical activity on depressive symptoms in midlife. Psychiatry Res. 2014;218(1-2):93-97. doi:10.1016/j.psychres.2014.03.028
Lee Y, Lim SW, Kim SY, et al. Association between the BDNF Val66Met Polymorphism and Chronicity of Depression. Psychiatry Investig. 2013;10(1):56-61. doi:10.4306/pi.2013.10.1.56
Su N, Zhang L, Fei F, et al. The brain-derived neurotrophic factor is associated with alcohol dependence-related depression and antidepressant response. Brain Res. 2011;1415:119-126. doi:10.1016/j.brainres.2011.08.005
Hosang GM, Uher R, Keers R, et al. Stressful life events and the brain-derived neurotrophic factor gene in bipolar disorder. J Affect Disord. 2010;125(1-3):345-349. doi:10.1016/j.jad.2010.01.071
BDNF (rs10835210):
Meng X, Kou C, Shi J, Yu Y, Huang Y. Susceptibility genes, social environmental risk factors and their interactions in internalizing disorders among mainland Chinese undergraduates. J Affect Disord. 2011;132(1-2):254-259. doi:10.1016/j.jad.2011.01.005
Meng XF, Kou CG, Shi JP, Yu YQ, Huang YQ. Zhonghua Liu Xing Bing Xue Za Zhi. 2009;30(12):1265-1268.
FKBP5 (rs1360780):
Kang C, Shi J, Gong Y, et al. Interaction between FKBP5 polymorphisms and childhood trauma on depressive symptoms in Chinese adolescents: The moderating role of resilience. J Affect Disord. 2020;266:143-150. doi:10.1016/j.jad.2020.01.051
Wang Q, Shelton RC, Dwivedi Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis. J Affect Disord. 2018;225:422-428. doi:10.1016/j.jad.2017.08.066
Rao S, Yao Y, Ryan J, et al. Common variants in FKBP5 gene and major depressive disorder (MDD) susceptibility: a comprehensive meta-analysis. Sci Rep. 2016;6:32687. Published 2016 Sep 7. doi:10.1038/srep32687
Stamm TJ, Rampp C, Wiethoff K, et al. The FKBP5 polymorphism rs1360780 influences the effect of an algorithm-based antidepressant treatment and is associated with remission in patients with major depression. J Psychopharmacol. 2016;30(1):40-47. doi:10.1177/0269881115620459
Mitjans M, Catalán R, Vázquez M, et al. Hypothalamic-pituitary-adrenal system, neurotrophic factors and clozapine response: association with FKBP5 and NTRK2 genes. Pharmacogenet Genomics. 2015;25(5):274-277. doi:10.1097/FPC.0000000000000132
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord. 2014;164:33-37. doi:10.1016/j.jad.2014.04.002
Minelli A, Maffioletti E, Cloninger CR, et al. Role of allelic variants of FK506-binding protein 51 (FKBP5) gene in the development of anxiety disorders. Depress Anxiety. 2013;30(12):1170-1176. doi:10.1002/da.22158
Lavebratt C, Aberg E, Sjöholm LK, Forsell Y. Variations in FKBP5 and BDNF genes are suggestively associated with depression in a Swedish population-based cohort. J Affect Disord. 2010;125(1-3):249-255. doi:10.1016/j.jad.2010.02.113
Kirchheiner J, Lorch R, Lebedeva E, et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics. 2008;9(7):841-846. doi:10.2217/14622416.9.7.841
Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319-1325. doi:10.1038/ng1479
FKBP5 (rs9470080):
Zhang L, Hu XZ, Yu T, et al. Genetic association of FKBP5 with PTSD in US service members deployed to Iraq and Afghanistan. J Psychiatr Res. 2020;122:48-53. doi:10.1016/j.jpsychires.2019.12.014
Li G, Wang L, Zhang K, et al. FKBP5 Genotype Linked to Combined PTSD-Depression Symptom in Chinese Earthquake Survivors. Can J Psychiatry. 2019;64(12):863-871. doi:10.1177/0706743719870505
Amad A, Ramoz N, Peyre H, Thomas P, Gorwood P. FKBP5 gene variants and borderline personality disorder. J Affect Disord. 2019;248:26-28. doi:10.1016/j.jad.2019.01.025
Wang Q, Shelton RC, Dwivedi Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis. J Affect Disord. 2018;225:422-428. doi:10.1016/j.jad.2017.08.066
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord. 2014;164:33-37. doi:10.1016/j.jad.2014.04.002
Kang JI, Chung HC, Jeung HC, Kim SJ, An SK, Namkoong K. FKBP5 polymorphisms as vulnerability to anxiety and depression in patients with advanced gastric cancer: a controlled and prospective study. Psychoneuroendocrinology. 2012;37(9):1569-1576. doi:10.1016/j.psyneuen.2012.02.017
Shinozaki G, Jowsey S, Amer H, et al. Relationship between FKBP5 polymorphisms and depression symptoms among kidney transplant recipients. Depress Anxiety. 2011;28(12):1111-1118. doi:10.1002/da.20879
Velders FP, Kuningas M, Kumari M, et al. Genetics of cortisol secretion and depressive symptoms: a candidate gene and genome wide association approach. Psychoneuroendocrinology. 2011;36(7):1053-1061. doi:10.1016/j.psyneuen.2011.01.003
FKBP5 (rs4713916):
Fan B, Ma J, Zhang H, et al. Association of FKBP5 gene variants with depression susceptibility: A comprehensive meta-analysis. Asia Pac Psychiatry. 2021;13(2):e12464. doi:10.1111/appy.12464
Hernández-Díaz Y, González-Castro TB, Tovilla-Zárate CA, et al. Association between FKBP5 polymorphisms and depressive disorders or suicidal behavior: A systematic review and meta-analysis study. Psychiatry Res. 2019;271:658-668. doi:10.1016/j.psychres.2018.12.066
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord. 2014;164:33-37. doi:10.1016/j.jad.2014.04.002
Collip D, Myin-Germeys I, Wichers M, et al. FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma. Br J Psychiatry. 2013;202(4):261-268. doi:10.1192/bjp.bp.112.115972
Zou YF, Wang F, Feng XL, et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci Lett. 2010;484(1):56-61. doi:10.1016/j.neulet.2010.08.019
Lekman M, Laje G, Charney D, et al. The FKBP5-gene in depression and treatment response–an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 2008;63(12):1103-1110. doi:10.1016/j.biopsych.2007.10.026
Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319-1325. doi:10.1038/ng1479
FKBP5 (rs9296158):
Li G, Wang L, Zhang K, et al. FKBP5 Genotype Linked to Combined PTSD-Depression Symptom in Chinese Earthquake Survivors. Can J Psychiatry. 2019;64(12):863-871. doi:10.1177/0706743719870505
Kohrt BA, Worthman CM, Ressler KJ, et al. Cross-cultural gene- environment interactions in depression, post-traumatic stress disorder, and the cortisol awakening response: FKBP5 polymorphisms and childhood trauma in South Asia. Int Rev Psychiatry. 2015;27(3):180-196. doi:10.3109/09540261.2015.1020052
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord. 2014;164:33-37. doi:10.1016/j.jad.2014.04.002
Collip D, Myin-Germeys I, Wichers M, et al. FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma. Br J Psychiatry. 2013;202(4):261-268. doi:10.1192/bjp.bp.112.115972
Kang JI, Chung HC, Jeung HC, Kim SJ, An SK, Namkoong K. FKBP5 polymorphisms as vulnerability to anxiety and depression in patients with advanced gastric cancer: a controlled and prospective study. Psychoneuroendocrinology. 2012;37(9):1569-1576. doi:10.1016/j.psyneuen.2012.02.017
Shinozaki G, Jowsey S, Amer H, et al. Relationship between FKBP5 polymorphisms and depression symptoms among kidney transplant recipients. Depress Anxiety. 2011;28(12):1111-1118. doi:10.1002/da.20879
MTHFR (rs1801133):
Jiang W, Xu J, Lu XJ, Sun Y. Association between MTHFR C677T polymorphism and depression: a meta-analysis in the Chinese population. Psychol Health Med. 2016;21(6):675-685. doi:10.1080/13548506.2015.1120327
Sayadi MA, Achour O, Ezzaher A, et al. CT genotype of 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is protector factor of major depressive disorder in the Tunisian population: a case control study. Ann Gen Psychiatry. 2016;15:18. Published 2016 Jul 30. doi:10.1186/s12991-016-0103-5
Lok A, Bockting CL, Koeter MW, et al. Interaction between the MTHFR C677T polymorphism and traumatic childhood events predicts depression. Transl Psychiatry. 2013;3(7):e288. Published 2013 Jul 30. doi:10.1038/tp.2013.60
Peerbooms OL, van Os J, Drukker M, et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability?. Brain Behav Immun. 2011;25(8):1530-1543. doi:10.1016/j.bbi.2010.12.006
Lewis SJ, Lawlor DA, Davey Smith G, et al. The thermolabile variant of MTHFR is associated with depression in the British Women’s Heart and Health Study and a meta-analysis. Mol Psychiatry. 2006;11(4):352-360. doi:10.1038/sj.mp.4001790
Bjelland I, Tell GS, Vollset SE, Refsum H, Ueland PM. Folate, vitamin B12, homocysteine, and the MTHFR 677C->T polymorphism in anxiety and depression: the Hordaland Homocysteine Study. Arch Gen Psychiatry. 2003;60(6):618-626. doi:10.1001/archpsyc.60.6.618
NR3C1 (rs6198):
Castro-Vale I, Durães C, van Rossum EFC, et al. The Glucocorticoid Receptor Gene (NR3C1) 9β SNP Is Associated with Posttraumatic Stress Disorder. Healthcare (Basel). 2021;9(2):173. Published 2021 Feb 5. doi:10.3390/healthcare9020173
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. J Affect Disord. 2011;134(1-3):138-144. doi:10.1016/j.jad.2011.06.020
Kumsta R, Entringer S, Koper JW, van Rossum EF, Hellhammer DH, Wüst S. Sex specific associations between common glucocorticoid receptor gene variants and hypothalamus-pituitary-adrenal axis responses to psychosocial stress. Biol Psychiatry. 2007;62(8):863-869. doi:10.1016/j.biopsych.2007.04.013
TCF7L2 (rs7903146):
Bodhini et al. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism. 2007 Sep,56(9):1174-8. https://doi.org/10.1016/j.metabol.2007.04.012
Cauchi et al. TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep. 2008 Apr,8(2):149-55. https://doi.org/10.1007/s11892-008-0026-x
Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119
Lyssenko et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. Aug 1, 2007, 117(8): 2155–2163. https://doi.org/10.1172/JCI30706
HIGD1C (rs12304921):
Prasad RB et al. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 2015 Mar 12,6(1):87-123. https://doi.org/10.3390/genes6010087
Ryoo H et al. Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur J Hum Genet. 2011 Jun,19(6):672-5. https://doi.org/10.1038/ejhg.2011.6
The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 Jun 7,447(7145):661-78. https://doi.org/10.1038/nature05911
HHEX (rs1111875):
Furukawa et al. Polymorphisms in the IDE-KIF11-HHEX gene locus are reproducibly associated with type 2 diabetes in a Japanese population. J Clin Endocrinol Metab. 2008 Jan,93(1):310-4. https://doi.org/10.1210/jc.2007-1029
Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119
Omori et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008 Mar,57(3):791-5. Epub 2007 Dec 27. https://doi.org/10.2337/db07-0979
van Vliet-Ostaptchouk et al. HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort. Eur J Hum Genet. 2008 May,16(5):652-6. https://doi.org/10.1038/sj.ejhg.5202008
IL6 (rs1800795):
Fishman et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998 Oct 1,102(7):1369-76. https://doi.org/10.1172/JCI2629
Huth et al. IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants‘ data from 21 studies. Diabetes. 2006 Oct,55(10):2915-21. https://doi.org/10.2337/db06-0600
Illig et al. Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. J Clin Endocrinol Metab. 2004 Oct,89(10):5053-8. https://doi.org/10.1210/jc.2004-0355
IL10 (rs1800872):
Bai et al. Association between interleukin 10 gene polymorphisms and risk of type 2 diabetes mellitus in a Chinese population. J Int Med Res. 2014 Apr 23. https://doi.org/10.1177/0300060513505813
Saxena M et al. An interleukin-10 gene promoter polymorphism (-592A/C) associated with type 2 diabetes: a North Indian study. Biochem Genet. 2012 Aug,50(7-8):549-59. https://doi.org/10.1007/s10528-012-9499-z
Scarpelli et al. Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in caucasian italian subjects. Diabetes. 2006 May,55(5):1529-33. https://doi.org/10.2337/db06-0047
Tarabay M et al. African vs. Caucasian and Asian difference for the association of interleukin-10 promotor polymorphisms with type 2 diabetes mellitus (a meta-analysis study). Meta Gene. 2016 Mar 4,9:10-7. https://doi.org/10.1016/j.mgene.2016.02.006
PPARG (rs1801282):
Altshuler et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000 Sep,26(1):76-80. https://doi.org/10.1038/79216
Deeb et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998 Nov,20(3):284-7. https://doi.org/10.1038/3099
Gouda et al. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010 Mar 15,171(6):645-55. https://doi.org/10.1093/aje/kwp450
Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119
FTO (rs9939609):
Frayling et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science. May 11, 2007, 316(5826): 889–894. https://doi.org/10.1126/science.1141634
Hertel et al. Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study). Diabetologia. 2008 Jun,51(6):971-7. https://doi.org/10.1007/s00125-008-0982-3
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 Jun 7,447(7145):661-78.
KCNJ11 (rs5219):
Florez et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes. 2004 May,53(5):1360-8. https://doi.org/10.2337/diabetes.53.5.1360
Florez et al. Type 2 Diabetes–Associated Missense Polymorphisms KCNJ11 E23K and ABCC8 A1369S Influence Progression to Diabetes and Response to Interventions in the Diabetes Prevention Program. Diabetes. Feb 2007, 56(2): 531–536. https://doi.org/10.2337/db06-0966
Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119
Omori et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008 Mar,57(3):791-5. Epub 2007 Dec 27. https://doi.org/10.2337/db07-0979
Zhou et al. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet. 2009 Jul,54(7):433-5. https://doi.org/10.1038/jhg.2009.54
LOXL1 (rs3825942):
Chen et al. Ethnicity-based subgroup meta-analysis of the association of LOXL1 polymorphisms with glaucoma. Mol Vis. 2010 Feb 6,16:167-77.
Thorleifsson et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007 Sep 7,317(5843):1397-400. Epub 2007 Aug 9.
Pasutto F et al. Association of LOXL1 Common Sequence Variants in German and Italian Patients with Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Investigative Opthalmology & Visual Science, 49(4), 1459.
Wang L et al. LOXL1 Gene Polymorphism With Exfoliation Syndrome/Exfoliation Glaucoma: A Meta-Analysis. J Glaucoma. 2016 Jan,25(1):62-94.
Fan BJ et al. DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity. BMC Med Genet. 2008 Feb 6,9:5.
HLA DQ 2.5 (rs2187668)
Monsuur et al. Effective Detection of Human Leukocyte Antigen Risk Alleles in Celiac Disease Using Tag Single Nucleotide Polymorphisms. PLoS One. 2008 May 28.3(5):e2270.
Wolters et al. Genetic background of celiac disease and its clinical implications. Am J Gastroenterol. 2008 Jan,103(1):190-5.
Louka et al. A collaborative European search for non-DQA1*05-DQB1*02 celiac disease loci on HLA-DR3 haplotypes: analysis of transmission from homozygous parents. Hum Immunol. 2003 Mar,64(3):350-8.
HLA DQ 8 (rs7454108)
Monsuur et al. Effective Detection of Human Leukocyte Antigen Risk Alleles in Celiac Disease Using Tag Single Nucleotide Polymorphisms. PLoS One. 2008 May 28.3(5):e2270
Wolters et al. Genetic background of celiac disease and its clinical implications. Am J Gastroenterol. 2008 Jan,103(1):190-5.
Louka et al. A collaborative European search for non-DQA1*05-DQB1*02 celiac disease loci on HLA-DR3 haplotypes: analysis of transmission from homozygous parents. Hum Immunol. 2003 Mar,64(3):350-8.
HFE (rs1800562):
Vujić et al. Molecular basis of HFE-hemochromatosis. Front Pharmacol. 2014 Mar 11,5:42.
Carelle et al. Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. Am J Hum Genet. Apr 1997, 60(4): 828–832.
Beutler E et al. HLA-H and associated proteins in patients with hemochromatosis. Molecular Medicine (Cambridge, Mass.), 3(6), 397–402.
Jouanolle A. M.et al. A candidate gene for hemochromatosis: frequency of the C282Y and H63D mutations. Human Genetics, 100(5–6), 544–7.
Moirand R et al. Haemochromatosis and HFE gene. Acta Gastroenterol Belg. 1999 Oct-Dec,62(4):403-9.
Mura C et al. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood. 1999 Apr 15,93(8):2502-5.
HFE (rs1799945):
Vujić et al. Molecular basis of HFE-hemochromatosis. Front Pharmacol. 2014 Mar 11,5:42.
Carelle et al. Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. Am J Hum Genet. Apr 1997, 60(4): 828–832.
Beutler E et al. HLA-H and associated proteins in patients with hemochromatosis. Molecular Medicine (Cambridge, Mass.), 3(6), 397–402.
Jouanolle A. M.et al. A candidate gene for hemochromatosis: frequency of the C282Y and H63D mutations. Human Genetics, 100(5–6), 544–7.
Moirand R et al. Haemochromatosis and HFE gene. Acta Gastroenterol Belg. 1999 Oct-Dec,62(4):403-9.
Mura C et al. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood. 1999 Apr 15,93(8):2502-5.
HFE (rs1800730):
Mura et al. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood. 1999 Apr 15,93(8):2502-5.
De Juan et al. HFE gene mutations analysis in Basque hereditary haemochromatosis patients and controls. European Journal of Human Genetics, 9(12), 961–964.
Crownover BK et al. Hereditary hemochromatosis. Am Fam Physician. 2013 Feb 1,87(3):183-90.
Wallace DF et al. Frequency of the S65C mutation of HFE and iron overload in 309 subjects heterozygous for C282Y. J Hepatol. 2002 Apr,36(4):474-9.
Asberg A et al. Hereditary hemochromatosis: the clinical significance of the S65C mutation. Genet Test. 2002 Spring,6(1):59-62.
Mura C et al. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood. 1999 Apr 15,93(8):2502-5.
CDK10 (rs258322):
Stefanaki I et al. Replication and predictive value of SNPs associated with melanoma and pigmentation traits in a Southern European case-control study. PLoS One. 2013,8(2):e55712. doi: 10.1371/journal.pone.0055712. Epub 2013 Feb 5.
Antonopoulou K et al. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol. 2015 Apr,135(4):1074-9.
Bishop DT et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009 Aug,41(8):920-5.
MTAP (rs7023329):
Bishop DT et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009 Aug,41(8):920-5. doi: 10.1038/ng.411. Epub 2009 Jul 5.
Antonopoulou K et al. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol. 2015 Apr,135(4):1074-9.
Einfalt et al. Confirmation of single nucleotide polymorphism rs7023329 in MTAP as a melanoma risk factor in a German population.
Livia Maccioni et al. Variants at the 9p21 locus and melanoma risk. BMC Cancer. 2013 Jul 2,13:325.
MYH7B (rs1885120):
Stefanaki I et al. Replication and predictive value of SNPs associated with melanoma and pigmentation traits in a Southern European case-control study. PLoS One. 2013,8(2):e55712. doi: 10.1371/journal.pone.0055712. Epub 2013 Feb 5.
Lin W et al. ASIP genetic variants and the number of non-melanoma skin cancers. Cancer Causes Control. 2011 Mar,22(3):495-501.
Brown KM et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet. 2008 Jul,40(7):838-40.
Nan H et al. Melanoma susceptibility variants on chromosome 20q11.22 are associated with pigmentary traits and the risk of nonmelanoma skin cancer. Br J Dermatol. 2010 Feb 1,162(2):461-3. doi: 10.1111/j.1365-2133.2009.09579.x. Epub 2009 Nov 30.
Chatzinasiou F et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst. 2011 Aug 17,103(16):1227-35.
Antonopoulou K et al. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol. 2015 Apr,135(4):1074-9.
Bishop DT et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009 Aug,41(8):920-5.
NCOA6 (rs4911442):
Gibbs DC et al. Inherited genetic variants associated with occurrence of multiple primary melanoma. Cancer Epidemiol Biomarkers Prev. 2015 Jun,24(6):992-7.
Stefanaki I et al. Replication and predictive value of SNPs associated with melanoma and pigmentation traits in a Southern European case-control study. PLoS One. 2013,8(2):e55712. doi: 10.1371/journal.pone.0055712. Epub 2013 Feb 5.
Brown KM et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet. 2008 Jul,40(7):838-40.
Maccioni L et al. Variants at chromosome 20 (ASIP locus) and melanoma risk. Int J Cancer. 2013 Jan 1,132(1):42-54.
PARP1 (rs3219090):
Pena-Chilet M et al. Genetic variants in PARP1 (rs3219090) and IRF4 (rs12203592) genes associated with melanoma susceptibility in a Spanish population. BMC Cancer. 2013 Mar 27,13:160.
Antonopoulou K et al. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol. 2015 Apr,135(4):1074-9.
Law MH et al. PARP1 polymorphisms play opposing roles in melanoma occurrence and survival. Int J Cancer. 2015 May 15,136(10):2488-9.
PIGU (rs910873):
Lin W et al. ASIP genetic variants and the number of non-melanoma skin cancers. Cancer Causes Control. 2011 Mar,22(3):495-501. doi: 10.1007/s10552-010-9724-1. Epub 2011 Jan 9.
Nan H et al. Melanoma susceptibility variants on chromosome 20q11.22 are associated with pigmentary traits and the risk of nonmelanoma skin cancer. Br J Dermatol. 2010 Feb 1,162(2):461-3. doi: 10.1111/j.1365-2133.2009.09579.x. Epub 2009 Nov 30.
Brown KM et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet. 2008 Jul,40(7):838-40. doi: 10.1038/ng.163. Epub 2008 May 18.
Debniak T et al. Modest association of malignant melanoma with the rs910873 and rs1885120 markers on chromosome 20: a population-based study. Melanoma Res. 2010 Apr,20(2):159-60.
Chatzinasiou F et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst. 2011 Aug 17,103(16):1227-35.
SLC45A2 (rs16891982)
Stefanaki I et al. Replication and predictive value of SNPs associated with melanoma and pigmentation traits in a Southern European case-control study. PLoS One. 2013,8(2):e55712. doi: 10.1371/journal.pone.0055712. Epub 2013 Feb 5.
Fernandez LP et al. SLC45A2: a novel malignant melanoma-associated gene. Hum Mutat. 2008 Sep,29(9):1161-7.
Duffy DL et al. Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J Invest Dermatol. 2010 Feb,130(2):520-8.
Lopez S et al. The interplay between natural selection and susceptibility to melanoma on allele 374F of SLC45A2 gene in a South European population. PLoS One. 2014 Aug 5,9(8):e104367.
Chatzinasiou F et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst. 2011 Aug 17,103(16):1227-35.
Kosiniak-Kamysz A et al. Increased risk of developing cutaneous malignant melanoma is associated with variation in pigmentation genes and VDR, and may involve epistatic effects. Melanoma Res. 2014 Aug,24(4):388-96.
Guedj M et al. Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum Mutat. 2008 Sep,29(9):1154-60.
Ibarrola-Villava M et al. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations: results from a meta-analysis. Eur J Cancer. 2012 Sep,48(14):2183-91.
Antonopoulou K et al. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol. 2015 Apr,135(4):1074-9.
CLPTM1L (rs401681):
Rafnar T et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009 Feb,41(2):221-7
Stacey SN et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009 Aug,41(8):909-14.
Nan H et al. Genetic variants in telomere-maintaining genes and skin cancer risk. Hum Genet. 2011 Mar,129(3):247-53.
Yang X et al. Association between TERT-CLPTM1L rs401681[C] allele and NMSC cancer risk: a meta-analysis including 45,184 subjects. Arch Dermatol Res. 2013 Jan,305(1):49-52.
TYR (rs1393350):
Bishop DT et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009 Aug,41(8):920-5. doi: 10.1038/ng.411. Epub 2009 Jul 5.
Chatzinasiou F et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst. 2011 Aug 17,103(16):1227-35.
Kosiniak-Kamysz A et al. Increased risk of developing cutaneous malignant melanoma is associated with variation in pigmentation genes and VDR, and may involve epistatic effects. Melanoma Res. 2014 Aug,24(4):388-96.
MC1R:
Pasquali E et al. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the MSKIP project. Int J Cancer. 2015 Feb 1,136(3):618-31.
Williams PF et al. Melanocortin 1 receptor and risk of cutaneous melanoma: a meta-analysis and estimates of population burden. Int J Cancer. 2011 Oct 1,129(7):1730-40.
Amos CI et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet. 2011 Dec 15,20(24):5012-23
Chatzinasiou F et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst. 2011 Aug 17,103(16):1227-35.
Kanetsky PA et al. Does MC1R genotype convey information about melanoma risk beyond risk phenotypes? Cancer. 2010 May 15,116(10):2416-28.
Raimondi S et al. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer. 2008 Jun 15,122(12):2753-60.
Tagliabue E et al. MC1R gene variants and non-melanoma skin cancer: a pooled-analysis from the M-SKIP project. Br J Cancer. 2015 Jul 14,113(2):354-63.
Andresen PA et al. Susceptibility to Cutaneous Squamous Cell Carcinoma in Renal Transplant Recipients Associates with Genes Regulating Melanogenesis Independent of their Role in Pigmentation. Biomark Cancer. 2013 Oct 7,5:41-7.
Ferrucci LM et al. Host phenotype characteristics and MC1R in relation to early-onset basal cell carcinoma. J Invest Dermatol. 2012 Apr,132(4):1272-9.
Davies JR et al. Inherited variants in the MC1R gene and survival from cutaneous melanoma: a BioGenoMEL study. Pigment Cell Melanoma Res. 2012 May,25(3):384-94.
Scherer D et al. MC1R variants associated susceptibility to basal cell carcinoma of skin: interaction with host factors and XRCC3 polymorphism. Int J Cancer. 2008 Apr 15,122(8):1787-93.
Dwyer T et al. Does the addition of information on genotype improve prediction of the risk of melanoma and nonmelanoma skin cancer beyond that obtained from skin phenotype? Am J Epidemiol. 2004 May 1,159(9):826-33.
ASIP (rs4911414/rs1015362):
Gudbjartsson DF et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet. 2008 Jul,40(7):886-91. doi: 10.1038/ng.161. Epub 2008 May 18.
Lin W et al. ASIP genetic variants and the number of non-melanoma skin cancers. Cancer Causes Control. 2011 Mar,22(3):495-501. doi: 10.1007/s10552-010-9724-1. Epub 2011 Jan 9.
Nan H et al. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int J Cancer. 2009 Aug 15,125(4):909-17.
Helsing P et al. MC1R, ASIP, TYR, and TYRP1 gene variants in a population-based series of multiple primary melanomas. Genes Chromosomes Cancer. 2012 Jul,51(7):654-61.
Maccioni L et al. Variants at chromosome 20 (ASIP locus) and melanoma risk. Int J Cancer. 2013 Jan 1,132(1):42-54. doi: 10.1002/ijc.27648. Epub 2012 Jun 13
CDH13 (rs8055236):
Linnea M. Baudhuin. Genetics of coronary artery disease: focus on genome-wide association studies. Am J Transl Res. 2009, 1(3): 221–234.
The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. https://doi.org/10.1038/nature05911
Yan Y et al. Evaluation of population impact of candidate polymorphisms for coronary heart disease in the Framingham Heart Study Offspring Cohort. BMC Proc. 2009 Dec 15,3 Suppl 7:S118. https://doi.org/10.1186/1753-6561-3-s7-s118
CHDS8 (rs1333049):
Bilguvar K. et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet. 2008 Dec,40(12):1472-7. https://doi.org/10.1038/ng.240
Burton PR. et all. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 Jun 7,447(7145):661-78. https://doi.org/10.1038/nature05911
Helgadottir A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008 Feb,40(2):217-24. https://doi.org/10.1038/ng.72
Helgadottir A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007 Jun 8,316(5830):1491-3. https://doi.org/10.1126/science.1142842
Karvanen J. et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet Epidemiol. 2009 Apr,33(3):237-46. https://doi.org/10.1002/gepi.20374
APOA5 (rs662799):
Aberle J. et al. A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clin Genet. 2005 Aug,68(2):152-4. https://doi.org/10.1111/j.1399-0004.2005.00463.x
Aouizerat B. E. et al. Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res. 2003 Jun,44(6):1167-73. https://doi.org/10.1194/jlr.M200480-JLR200
Dorfmeister B. et al. The effect of APOA5 and APOC3 variants on lipid parameters in European Whites, Indian Asians and Afro-Caribbeans with type 2 diabetes. Biochim Biophys Acta. 2007 Mar,1772(3):355-63. https://doi.org/10.1016/j.bbadis.2006.11.008
PON1 (rs662):
Ahmad I et al. Two- and three-locus haplotypes of the paraoxonase (PON1) gene are associated with coronary artery disease in Asian Indians. Gene. 2012 Sep 10,506(1):242-7. https://doi.org/10.1016/j.gene.2012.06.031
Agrawal S et al. Paraoxonase 1 gene polymorphisms contribute to coronary artery disease risk among north Indians. Indian J Med Sci. 2009 Aug,63(8):335-44.
Baum et al. Paraoxonase 1 gene Q192R polymorphism affects stroke and myocardial infarction risk. Clinical biochemistry. https://doi.org/10.1016/j.clinbiochem.2006.01.010
Chen, Q., Reis, S. E., Kammerer, C. M., McNamara, D. M., Holubkov, R., Sharaf, B. L., Sopko, G., Pauly, D. F., Merz, C. N., Kamboh, M. I., & WISE Study Group (2003). Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. American journal of human genetics, 72(1), 13–22. https://doi.org/10.1086/345312
Hassan et al. The Q192R polymorphism of the paraoxonase 1 gene is a risk factor for coronary artery disease in Saudi subjects. Mol Cell Biochem. 2013 Aug,380(1-2):121-8. https://doi.org/10.1007/s11010-013-1665-z
Imai Y et al. Evidence for association between paraoxonase gene polymorphisms and atherosclerotic diseases. Atherosclerosis. 2000 Apr,149(2):435-42. https://doi.org/10.1016/s0021-9150(99)00340-8
Kallel A et al. The paraoxonase L55M and Q192R gene polymorphisms and myocardial infarction in a Tunisian population. Clin Biochem. 2010 Dec,43(18):1461-3. https://doi.org/10.1016/j.clinbiochem.2010.08.029
Vaisi-Raygani, A., Ghaneialvar, H., Rahimi, Z., Tavilani, H., Pourmotabbed, T., Shakiba, E., Vaisi-Raygani, A., Kiani, A., Aminian, M., Alibakhshi, R., & Bartels, C. (2011). Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease. Molecular biology reports, 38(8), 5421–5428. https://doi.org/10.1007/s11033-011-0696-3
PON1 (rs854560):
Agrawal S et al. Paraoxonase 1 gene polymorphisms contribute to coronary artery disease risk among north Indians. Indian J Med Sci. 2009 Aug,63(8):335-44.
Oliveira SA et al. PON1 M/L55 mutation protects high-risk patients against coronary artery disease. Int J Cardiol. 2004 Mar,94(1):73-7. https://doi.org/10.1016/j.ijcard.2003.05.011
Ozkök E et al. Combined impact of matrix metalloproteinase-3 and paraoxonase 1 55/192 gene variants on coronary artery disease in Turkish patients. Med Sci Monit. 2008 Oct,14(10):CR536-42. https://doi.org/10.1016/j.ijcard.2003.05.011
Rios DL et al. Paraoxonase 1 gene polymorphisms in angiographically assessed coronary artery disease: evidence for gender interaction among Brazilians. Clin Chem Lab Med. 2007,45(7):874-8. https://doi.org/10.1515/CCLM.2007.136
Watzinger N et al. Human paraoxonase 1 gene polymorphisms and the risk of coronary heart disease: a community-based study. Cardiology. 2002,98(3):116-22. https://doi.org/10.1159/000066321
APOB (rs5742904):
Castillo et al. The apolipoprotein B R3500Q gene mutation in Spanish subjects with a clinical diagnosis of familial hypercholesterolemia. Atherosclerosis. 2002 Nov,165(1):127-35. https://doi.org/10.1016/s0021-9150(02)00190-9
Haiqing et al. Familial Defective Apolipoprotein B-100 and Increased Low-Density Lipoprotein Cholesterol and Coronary Artery Calcification in the Old Order Amish. Arch Intern Med. Nov 8, 2010, 170(20): 1850–1855. https://doi.org/10.1001/archinternmed.2010.384
Meriño-Ibarra et al. Screening of APOB gene mutations in subjects with clinical diagnosis of familial hypercholesterolemia. Hum Biol. 2005 Oct,77(5):663-73.
Real et al. Influence of LDL receptor gene mutations and the R3500Q mutation of the apoB gene on lipoprotein phenotype of familial hypercholesterolemic patients from a South European population. Eur J Hum Genet. 2003 Dec,11(12):959-65. https://doi.org/10.1038/sj.ejhg.5201079
NOS3 (rs2070744):
Lee CR et al. NOS3 polymorphisms, cigarette smoking, and cardiovascular disease risk: the Atherosclerosis Risk in Communities study. Pharmacogenet Genomics. 2006 Dec,16(12):891-9. https://doi.org/10.1097/01.fpc.0000236324.96056.16
Rossi et al. The T(-786)C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol. 2006 Sep 19,48(6):1166-74. https://doi.org/10.1016/j.jacc.2006.05.046
Tangurek B et al. The relationship between endothelial nitric oxide synthase gene polymorphism (T-786 C) and coronary artery disease in the Turkish population. Heart Vessels. 2006 Sep,21(5):285-90. Epub 2006 Sep 29. https://doi.org/10.1007/s00380-005-0902-0
APOA1 (rs670):
Angotti E et al. A polymorphism (G–>A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. J Biol Chem. 1994 Jul 1,269(26):17371-4.
Juo SH et al. Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta analysis. Am J Med Genet. 1999 Jan 29,82(3):235-41.
Mata P et al. Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis. 1998 Apr,137(2):367-76.
Miles RR et al. Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. J Biol Chem. 2013 Mar 1,288(9):6386-96. https://doi.org/10.1074/jbc.M112.410092
Ordovas JM. et al. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex specific manner: the Framingham Study. Am J Clin Nutr. 2002 Jan,75(1):38-46.
Ordovas JM et al. Gene-diet interaction and plasma lipid responses to dietary intervention. Biochem Soc Trans. 2002 Apr,30(2):68-73.
Ruano G et al. Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis. 2006 Mar,185(1):65-9. Epub 2005 Jul 7. https://doi.org/10.1016/j.atherosclerosis.2005.05.029
Rudkowska I et al. Gene-diet interactions on plasma lipid levels in the Inuit population. Br J Nutr. 2013 Mar 14,109(5):953-61. https://doi.org/10.1017/S0007114512002231
MTRR (rs1801394):
Cai et al. Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: an integrated meta-analysis. PLoS One. 2014 Mar 4,9(3):e89609. https://doi.org/10.1371/journal.pone.0089609
Olteanu et al. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002 Nov 12,41(45):13378-85. https://doi.org/10.1021/bi020536s
van Beynum IM et al. MTRR 66A>G polymorphism in relation to congenital heart defects. Clin Chem Lab Med. 2006,44(11):1317-23. https://doi.org/10.1515/CCLM.2006.254
Yu D et al. Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies. Pediatr Cardiol. 2014 Oct,35(7):1091-8. https://doi.org/10.1007/s00246-014-0948-9
Zeng W et al. A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genet Mol Res. 2011 Oct 25,10(4):2597-605.
GJA4 (rs1764391):
Guo SX et al. Association between C1019T polymorphism of the connexin37 gene and coronary heart disease in patients with in-stent restenosis. Exp Ther Med. 2013 Feb,5(2):539-544. Epub 2012 Dec 5. https://doi.org/10.3892/etm.2012.852
Han Y et al. Association of connexin 37 gene polymorphisms with risk of coronary artery disease in northern Han Chinese. Cardiology. 2008,110(4):260-5. Epub 2007 Dec 12. https://doi.org/10.1159/000112410
Su-Xia Guo et al. Association between C1019T polymorphism of the connexin37 gene and coronary heart disease in patients with in-stent restenosis. Exp Ther Med. 2013 Feb, 5(2): 539–544.
Wen D et al. Association of Connexin37 C1019T with myocardial infarction and coronary artery disease: a meta-analysis. Exp Gerontol. 2014 Oct,58:203-7. https://doi.org/10.1016/j.exger.2014.06.011
Ye H et al. Genetic associations with coronary heart disease: meta-analyses of 12 candidate genetic variants. Gene. 2013 Nov 15,531(1):71-7. doi: 10.1016/j.gene.2013.07.029. Epub 2013 Jul 29. https://doi.org/10.1016/j.gene.2013.07.029
ITGB3 (rs5918):
Erdman V et al. OS 08-03 PHARMACOGENETIC MARKERS OF SURVIVAL. J Hypertens. 2016 Sep,34 Suppl 1 – ISH 2016 Abstract Book:e68.
Goodman T et al. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol. 2008 Aug,66(2):222-32. https://doi.org/10.1111/j.1365-2125.2008.03183.x
Undas et al. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation. 2001 Nov 27,104(22):2666-72. https://doi.org/10.1161/hc4701.099787
Weiss, E. J., Bray, P. F., Tayback, M., Schulman, S. P., Kickler, T. S., Becker, L. C., Weiss, J. L., Gerstenblith, G., & Goldschmidt-Clermont, P. J. (1996). A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. The New England journal of medicine, 334(17), 1090–1094. https://doi.org/10.1056/NEJM199604253341703
CETP (rs708272):
Agirbasli et al. Multi-locus candidate gene analyses of lipid levels in a pediatric Turkish cohort: lessons learned on LPL, CETP, LIPC, ABCA1, and SHBG. OMICS. 2013 Dec,17(12):636-45. https://doi.org/10.1089/omi.2013.0066
Radovica et al. The association of common SNPs and haplotypes in CETP gene with HDL cholesterol levels in Latvian population. PLoS One. 2013 May 13,8(5):e64191. https://doi.org/10.1371/journal.pone.0064191
Wang et al. CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Dis. 2013 Nov 27,12:176. https://doi.org/10.1186/1476-511X-12-176
MTHFR (rs1801133):
Ashfield-Watt P.A. et al. Methylenetetrahydrofolate reductase 677C–>T genotype modulates homocysteine responses to a folate-rich diet or a low dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr. 2002 Jul,76(1):180-6. https://doi.org/10.1093/ajcn/76.1.180
Bønaa K.H. et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006 Apr 13,354(15):1578-88. https://doi.org/10.1056/NEJMoa055227
Hustad et al. Riboflavin and Methylenetetrahydrofolate Reductase. Madame Curie Bioscience Database. https://www.ncbi.nlm.nih.gov/books/NBK6145/
Jacques PF et al. The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr. 2002,132(2):283-288. https://doi.org/10.1093/jn/132.2.283
Lewis S. J. et al. Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ. 2005 Nov 5,331(7524):1053. https://doi.org/10.1136/bmj.38611.658947.55
Ventura P et al. Hyperhomocysteinemia and MTHFR C677T polymorphism in patients with portal vein thrombosis complicating liver cirrhosis. Thromb Res. 2016 May,141:189-95.
MMP3 (rs3025058):
Abilleira et al. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet. 2006 Dec,43(12):897-901. Epub 2006 Aug 11. https://doi.org/10.1136/jmg.2006.040808
Wang J et al. Polymorphisms of matrix metalloproteinases in myocardial infarction: a meta-analysis. Heart. 2011 Oct,97(19):1542-6. doi: 10.1136/heartjnl-2011-300342.
Zee et al. Genetic risk factors in recurrent venous thromboembolism: A multilocus, population-based, prospective approach. Clin Chim Acta. 2009 Apr,402(1-2):189-92. https://doi.org/10.1016/j.cca.2009.01.011
NOS1AP (rs16847548):
Arking et al. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS One. 2009,4(1):e4333. https://doi.org/10.1371/journal.pone.0004333
Crotti et al.NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 2009 Oct 27,120(17):1657-63. https://doi.org/10.1161/CIRCULATIONAHA.109.879643
Kao et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009 Feb 24,119(7):940-51. https://doi.org/10.1161/CIRCULATIONAHA.108.791723
NOS1AP (rs12567209):
Eijgelsheim et al. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam Study. Hum Mol Genet. Nov 1, 2009, 18(21): 4213–4218. https://doi.org/10.1093/hmg/ddp356
Kao et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009 Feb 24,119(7):940-51. https://doi.org/10.1161/CIRCULATIONAHA.108.791723
Liu et al. A common NOS1AP genetic polymorphism, rs12567209 G>A, is associated with sudden cardiac death in patients with chronic heart failure in the Chinese Han population. J Card Fail. 2014 Apr,20(4):244-51. https://doi.org/10.1016/j.cardfail.2014.01.006
NOS1AP (rs10494366):
Aarnoudse et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation. 2007 Jul 3. https://doi.org/10.1161/CIRCULATIONAHA.106.676783
Arking et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006 Jun,38(6):644-51. https://doi.org/10.1038/ng1790
Marjamaa et al. Common candidate gene variants are associated with QT interval duration in the general population. J Intern Med. 2009 Apr,265(4):448-58. https://doi.org/10.1111/j.1365-2796.2008.02026.x
SREBF2 (rs2228314):
Fan et al. Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Published online Dec 30, 2008. https://doi.org/10.1186/1477-9560-6-17
Mohammad Abdullah et al. The impact of dairy consumption on circulating cholesterol levels is modulated by common single nucleotide polymorphisms in cholesterol synthesis- and transport-related genes. Fasebj, Published Online: 1 Apr 2014 Abstract Number: 1038.4. https://doi.org/10.1096/fasebj.28.1_supplement.1038.4
Wang Y et al. Relationship of SREBP-2 rs2228314 G>C polymorphism with nonalcoholic fatty liver disease in a Han Chinese population. Genet Test Mol Biomarkers. 2014 Sep,18(9):653-7. https://doi.org/10.1089/gtmb.2014.0116
CYP1A2 (rs762551):
Bågeman, E., Ingvar, C., Rose, C., & Jernström, H. (2008). Coffee consumption and CYP1A2*1F genotype modify age at breast cancer diagnosis and estrogen receptor status. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 17(4), 895–901. https://doi.org/10.1158/1055-9965.EPI-07-0555
„Caffeine“. DrugBank. University of Alberta. 16 September 2013. Retrieved 8 August 2014.
Sachse C et al. Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999 Apr,47(4):445-9. https://doi.org/10.1046/j.1365-2125.1999.00898.x
APOE (E2/E3/E4):
Bennet AM et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007 Sep 19, 298(11):1300-11. https://doi.org/10.1001/jama.298.11.1300
Dammerman, M., & Breslow, J. L. (1995). Genetic basis of lipoprotein disorders. Circulation, 91(2), 505–512. https://doi.org/10.1161/01.cir.91.2.505
Burman D et al. Relationship of the ApoE polymorphism to plasma lipid traits among South Asians, Chinese, and Europeans living in Canada. Atherosclerosis. 2009 Mar,203(1):192-200. https://doi.org/10.1016/j.atherosclerosis.2008.06.007
Dallongeville et al. Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. J Lipid Res. 1992 Apr,33(4):447-54.
Muendlein A et al. Synergistic effects of the apolipoprotein E epsilon3/epsilon2/epsilon4, the cholesteryl ester transfer protein TaqIB, and the apolipoprotein C3 -482 C>T polymorphisms on their association with coronary artery disease. Atherosclerosis. 2008 Jul,199(1):179-86. https://doi.org/10.1016/j.atherosclerosis.2007.10.030
Roberto Elosua et al. Association of APOE genotype with carotid atherosclerosis in men and women the Framingham Heart Study. October 2004 The Journal of Lipid Research, 45, 1868-1875. https://doi.org/10.1194/jlr.M400114-JLR20
AGT (rs699):
Nakajima et al. Nucleotide Diversity and Haplotype Structure of the Human Angiotensinogen Gene in Two Populations. Am J Hum Genet. Jan 2002, 70(1): 108–123.
Jeunemaitre et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992 Oct 2,71(1):169-80.
Corvol et al. Molecular Genetics of Human Hypertension: Role of Angiotensinogen. Endocrine Reviews 18(5): 662–677.
Hunt SC et al. Angiotensinogen genotype, sodium reduction, weight loss, and prevention of hypertension: trials of hypertension prevention, phase II. Hypertension. 1998 Sep,32(3):393-401.
Norat T et al. Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. Am J Clin Nutr. 2008 Aug,88(2):392-7.
Svetkey LP et al. Angiotensinogen genotype and blood pressure response in the Dietary Approaches to Stop Hypertension (DASH) study. J Hypertens 2001
MTHFR (rs1801133):
McNulty et al. Riboflavin, MTHFR genotype and blood pressure: A personalized approach to prevention and treatment of hypertension. Mol Aspects Med. 2017 Feb,53:2-9
McAuley et al. Riboflavin status, MTHFR genotype and blood pressure: current evidence and implications for personalised nutrition. Proc Nutr Soc. 2016 Aug,75(3):405-14
Wilson et al. Blood pressure in treated hypertensive individuals with the MTHFR 677TT genotype is responsive to intervention with riboflavin: findings of a targeted randomized trial. Hypertension. 2013 Jun,61(6):1302-8.
Ward et al. B-vitamins, methylenetetrahydrofolate reductase (MTHFR) and hypertension. Int J Vitam Nutr Res. 2011 Jul,81(4):240-4
ADRB1 (rs1801253):
Johnson et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011 May,57(5):903-10.
Peng Y et al. Polymorphisms of the beta1-adrenergic receptor gene are associated with essential hypertension in Chinese. Clin Chem Lab Med. 2009,47(10):1227-31.
Gjesing AP et al. Studies of associations between the Arg389Gly polymorphism of the beta1-adrenergic receptor gene (ADRB1) and hypertension and obesity in 7677 Danish white subjects. Diabet Med. 2007 Apr,24(4):392-7. Epub 2007 Feb 28.
GNB3 (rs5443):
Siffert W. G-protein beta3 subunit 825T allele and hypertension. Curr Hypertens Rep. 2003 Feb,5(1):47-53.
El Din Hemimi NS et al. Prediction of the Risk for Essential Hypertension among Carriers of C825T Genetic Polymorphism of G Protein β3 (GNB3) Gene. Biomark Insights. 2016 May 17,11:69-75.
Cabadak H et al. The role of G protein β3 subunit polymorphisms C825T, C1429T, and G5177A in Turkish subjects with essential hypertension. Clin Exp Hypertens. 2011,33(3):202-8.
LCT (rs4988235):
Enattah et al. Identification of a variant associated with adult-type hypolactasia. Nat Genet. 2002 Feb,30(2):233-7
Bersaglieri et al. Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene. The American Journal of Human Genetics, 74(6), 1111–1120.
Rasinperä et al. Transcriptional downregulation of the lactase (LCT) gene during childhood. Gut. Nov 2005, 54(11): 1660–1661.
Matlik L et al. Perceived milk intolerance is related to bone mineral content in 10- to 13-year-old female adolescents. Pediatrics 2007.
CYP1A1 (rs4646903):
Hussein AG et al. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene. 2014 May 10,541(1):26-30. https://doi.org/10.1016/j.gene.2014.03.003
Islam MS et al. Epub 2012 Nov 21. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013 Feb 1,416:11-9. https://doi.org/10.1016/j.cca.2012.11.011
Jiang XY et al. Susceptibility of lung cancer with polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 genotypes in the population of Inner Mongolia region. Asian Pac J Cancer Prev. 2014,15(13):5207-14. https://doi.org/10.7314/apjcp.2014.15.13.5207
Kiyohara C. et al. Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J Thorac Oncol. 2012 Jun,7(6):954-62. https://doi.org/10.1097/JTO.0b013e31824de30f
Li W et al. Combined effects of CYP1A1 MspI and GSTM1 genetic polymorphisms on risk of lung cancer: an updated meta-analysis. Tumour Biol. 2014 Sep,35(9):9281-90. https://doi.org/10.1007/s13277-014-2212-6
Liu HX et al. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res. 2016 Nov 3,15(4). https://doi.org/10.4238/gmr15048813
Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x
Shi X et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008 Feb,59(2):155-63. https://doi.org/10.1016/j.lungcan.2007.08.004
Song N et al. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001 Jan,22(1):11-6. https://doi.org/10.1093/carcin/22.1.11
Taioli E et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol. 2003 Feb,32(1):60-3. https://doi.org/10.1093/ije/dyg001
Wright CM et al. Genetic association study of CYP1A1 polymorphisms identifies risk haplotypes in nonsmall cell lung cancer. Eur Respir J. 2010 Jan,35(1):152-9. https://doi.org/10.1183/09031936.00120808
Vineis P et al. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene-gene interactions. Biomarkers. 2004 May Jun,9(3):298-305. https://doi.org/10.1080/13547500400011070
Xu X et al. Cytochrome P450 CYP1A1 MspI polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1996 Sep,5(9):687-92.
GSTM1:
Ford JG et al. Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis. 2000 Nov,21(11):1971-5. https://doi.org/10.1093/carcin/21.11.1971
Jiang XY et al. Susceptibility of lung cancer with polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 genotypes in the population of Inner Mongolia region. Asian Pac J Cancer Prev. 2014,15(13):5207-14. https://doi.org/10.7314/apjcp.2014.15.13.5207
Kiyohara C et al. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of environmental tobacco smoke and lung cancer: a case control study in Japanese nonsmoking women. Int J Cancer. 2003 Oct 20,107(1):139-44. https://doi.org/10.1002/ijc.11355
Li W et al. Combined effects of CYP1A1 MspI and GSTM1 genetic polymorphisms on risk of lung cancer: an updated meta-analysis. Tumour Biol. 2014 Sep,35(9):9281-90. https://doi.org/10.1007/s13277-014-2212-6
Li W et al. Polymorphisms in GSTM1, CYP1A1, CYP2E1, and CYP2D6 are associated with susceptibility and chemotherapy response in non-small-cell lung cancer patients. Lung. 2012 Feb,190(1):91-8. https://doi.org/10.1007/s00408-011-9338-8
Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x
Pliarchopoulou K et al. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol Lett. 2012 Jun,3(6):1301-1306. https://doi.org/10.3892/ol.2012.665
Pinarbasi H et al. Strong association between the GSTM1-null genotype and lung cancer in a Turkish population. Cancer Genet Cytogenet. 2003 Oct 15,146(2):125-9. https://doi.org/10.1016/s0165-4608(03)00059-1
Shi X et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008 Feb,59(2):155-63. https://doi.org/10.1016/j.lungcan.2007.08.004
Yang H et al. The association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population: evidence from an updated meta-analysis. Sci Rep. 2015 Mar 23,5:9392. https://doi.org/10.1038/srep09392
GSTT1:
Gui Q et al. The present/null polymorphism in the GSTT1 gene and the risk of lung cancer in Chinese population. Tumour Biol. 2013 Dec,34(6):3465-9. https://doi.org/10.1007/s13277-013-0923-8
Kumar M et al. Lung cancer risk in north Indian population: role of genetic polymorphisms and smoking. Mol Cell Biochem. 2009 Feb,322(1-2):73-9. https://doi.org/10.1007/s11010-008-9941-z
Pan Cet al. Glutathione S-transferase T1 and M1 polymorphisms are associated with lung cancer risk in a gender-specific manner. Oncol Res Treat. 2014,37(4):164-9. https://doi.org/10.1159/000361083
Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x
Shukla RK et al. Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a Northern Indian population. Asian Pac J Cancer Prev. 2013,14(5):3345-9. https://doi.org/10.7314/apjcp.2013.14.5.3345
Sørensen M et al. Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer. Int J Cancer. 2004 Jun 10,110(2):219-24. https://doi.org/10.1002/ijc.20075
Sreeja L et al. Possible risk modification by CYP1A1, GSTM1 and GSTT1 gene polymorphisms in lung cancer susceptibility in a South Indian population. J Hum Genet. 2005,50(12):618-27. https://doi.org/10.1007/s10038-005-0303-3
Taioli E et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol. 2003 Feb,32(1):60-3. https://doi.org/10.1093/ije/dyg001
Wang Y et al. The association of GSTT1 deletion polymorphism with lung cancer risk among Chinese population: evidence based on a cumulative meta-analysis. Onco Targets Ther. 2015 Oct 12,8:2875-82. https://doi.org/10.2147/OTT.S93745
Wang Y et al. Glutathione S-transferase T1 gene deletion polymorphism and lung cancer risk in Chinese population: a meta-analysis. Cancer Epidemiol. 2010 Oct,34(5):593-7. https://doi.org/10.1016/j.canep.2010.05.008
GSTP1 (rs1695):
Chen X et al. Glutathione S-transferase P1 gene Ile105Val polymorphism might be associated with lung cancer risk in the Chinese Han population. Tumour Biol. 2012 Dec,33(6):1973-81.
Kiyohara C. Et al. Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J Thorac Oncol. 2012 Jun,7(6):954-62. https://doi.org/10.1097/JTO.0b013e31824de30f
Li XM et al. Glutathione S-transferase P1, gene-gene interaction, and lung cancer susceptibility in the Chinese population: An updated meta-analysis and review. J Cancer Res Ther. 2015 Jul-Sep,11(3):565-70. https://doi.org/10.4103/0973-1482.163788
Liu HX et al. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res. 2016 Nov 3,15(4). https://doi.org/10.4238/gmr15048813
Pliarchopoulou K et al. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol Lett. 2012 Jun,3(6):1301-1306. https://doi.org/10.3892/ol.2012.665
Risch A et al. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics. 2001 Dec,11(9):757-64. https://doi.org/10.1097/00008571-200112000-00003
Sreeja L et al. Glutathione S-transferase M1, T1 and P1 polymorphisms: susceptibility and outcome in lung cancer patients. J Exp Ther Oncol. 2008,7(1):73-85.
Stücker I et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis. 2002 Sep,23(9):1475-81. https://doi.org/10.1093/carcin/23.9.1475
Wang Y et al. Correlation between metabolic enzyme GSTP1 polymorphisms and susceptibility to lung cancer. Exp Ther Med. 2015 Oct,10(4):1521-1527. https://doi.org/10.3892/etm.2015.2666
Yang M et al. Combined effects of genetic polymorphisms in six selected genes on lung cancer susceptibility. Lung Cancer. 2007 Aug,57(2):135-42. https://doi.org/10.1016/j.lungcan.2007.03.005
CYP1A1 (rs1048943):
Atinkaya C. Et al. The effect of CYP1A1, GSTT1 and GSTM1 polymorphisms on the risk of lung cancer: a case-control study. Hum Exp Toxicol. 2012 Oct,31(10):1074-80. https://doi.org/10.1177/0960327111428630
Drakoulis N et al. Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3′-flanking region. Clin Investig. 1994 Feb,72(3):240-8https://doi.org/10.1007/BF00189321
Hung RJ et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis. 2003 May,24(5):875-82. https://doi.org/10.1093/carcin/bgg026
Hussein AG et al. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene. 2014 May 10,541(1):26-30. https://doi.org/10.1016/j.gene.2014.03.003
Islam MS et al. Epub 2012 Nov 21. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013 Feb 1,416:11-9. https://doi.org/10.1016/j.cca.2012.11.011
Kumar M et al. Lung cancer risk in north Indian population: role of genetic polymorphisms and smoking. Mol Cell Biochem. 2009 Feb,322(1-2):73-9. https://doi.org/10.1007/s11010-008-9941-z
Kiyohara C. Et al. Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J Thorac Oncol. 2012 Jun,7(6):954-62. https://doi.org/10.1097/JTO.0b013e31824de30f
Liu HX et al. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res. 2016 Nov 3,15(4). https://doi.org/10.4238/gmr15048813
Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x
Raimondi S et al. Metabolic gene polymorphisms and lung cancer risk in non-smokers. An update of the GSEC study. Mutat Res. 2005 Dec 30,592(1-2):45-57. https://doi.org/10.1016/j.mrfmmm.2005.06.002
Shi X et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008 Feb,59(2):155-63. https://doi.org/10.1016/j.lungcan.2007.08.004
Sobti RC et al. Genetic polymorphism of the CYP1A1, CYP2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north indian population. Mol Cell Biochem. 2004 Nov,266(1-2):1-9. https://doi.org/10.1023/b:mcbi.0000049127.33458.87
Song N et al. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001 Jan,22(1):11-6. https://doi.org/10.1093/carcin/22.1.11
Wright CM et al. Genetic association study of CYP1A1 polymorphisms identifies risk haplotypes in nonsmall cell lung cancer. Eur Respir J. 2010 Jan,35(1):152-9. https://doi.org/10.1183/09031936.00120808
Yang XR et al. CYP1A1 and GSTM1 polymorphisms in relation to lung cancer risk in Chinese women. Cancer Lett. 2004 Oct 28,214(2):197-204. https://doi.org/10.1016/j.canlet.2004.06.040
NOD2 (rs2066844):
Jung et al. Genotype/phenotype analyses for 53 Crohns disease associated genetic polymorphisms. PLoS One. 2012,7(12):e52223.
Hugot et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohns disease. Nature. 2001 May 31,411(6837):599-603.
Glas et al. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common Crohns disease susceptibility gene variants. PLoS One. 2010 Dec 30,5(12):e14466.
Yazdanyar et al. Penetrance of NOD2/CARD15 genetic variants in the general population. CMAJ. 2010 Apr 20,182(7):661-5.
NOD2 (rs2066845):
Jung et al. Genotype/phenotype analyses for 53 Crohns disease associated genetic polymorphisms. PLoS One. 2012,7(12):e52223.
Hugot et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohns disease. Nature. 2001 May 31,411(6837):599-603.
Glas et al. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common Crohns disease susceptibility gene variants. PLoS One. 2010 Dec 30,5(12):e14466.
Yazdanyar et al. Penetrance of NOD2/CARD15 genetic variants in the general population. CMAJ. 2010 Apr 20,182(7):661-5.
NOD2 (rs2066847):
Jung et al. Genotype/phenotype analyses for 53 Crohns disease associated genetic polymorphisms. PLoS One. 2012,7(12):e52223.
Hugot et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohns disease. Nature. 2001 May 31,411(6837):599-603.
Glas et al. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common Crohns disease susceptibility gene variants. PLoS One. 2010 Dec 30,5(12):e14466.
Yazdanyar et al. Penetrance of NOD2/CARD15 genetic variants in the general population. CMAJ. 2010 Apr 20,182(7):661-5.
COL1A1 (rs1800012):
Jin et al. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporos Int. 2011 Mar,22(3):911-21. https://doi.org/10.1007/s00198-010-1364-5
Mann V et a. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone. 2003 Jun,32(6):711-7. https://doi.org/10.1016/s8756-3282(03)00087-5
Qureshi et al. COLIA1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif Tissue Int. 2002 Mar,70(3):158-63. Epub 2002 Feb 19. https://doi.org/10.1007/s00223-001-1035-9
VDR (rs1544410):
Creatsa M et al. The effect of vitamin D receptor BsmI genotype on the response to osteoporosis treatment in postmenopausal women: a pilot study. J Obstet Gynaecol Res. 2011 Oct,37(10):1415-22. https://doi.org/10.1111/j.1447-0756.2011.01557.x
Jia et al. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet Test Mol Biomarkers. 2013 Jan,17(1):30-4. https://doi.org/10.1089/gtmb.2012.0267
Marc J et al. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos Int. 1999,10(4):303-6. https://doi.org/10.1007/s001980050231
Mossetti G et al. Vitamin D receptor gene polymorphisms predict acquired resistance to clodronate treatment in patients with Paget’s disease of bone. Calcif Tissue Int. 2008 Dec,83(6):414-24. https://doi.org/10.1007/s00223-008-9193-7
Palomba et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporos Int. 2005 Aug,16(8):943-52. Epub 2005 Mar 1. https://doi.org/10.1007/s00198-004-1800-5
Palomba et al. Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Hum Reprod. 2003 Jan,18(1):192-8. https://doi.org/10.1093/humrep/deg031
ESR1 (rs2234693):
Gennari L et al. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am J Epidemiol. 2005 Feb 15,161(4):307-20. https://doi.org/10.1093/aje/kwi055
Herrington DM et al. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N Engl J Med. 2002 Mar 28,346(13):967-74. https://doi.org/10.1056/NEJMoa012952
Herrington DM et al. Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation. 2002 Apr 23,105(16):1879-82. https://doi.org/10.1161/01.cir.0000016173.98826.88
van Meurs JB et al. Association of 5′ estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet. 2003 Jul 15,12(14):1745-54. https://doi.org/10.1093/hmg/ddg176
LCT (rs4988235):
Almon R et al. Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. J Nutr Sci. 2013 Jul 24,2:e26. https://doi.org/10.1017/jns.2013.11
Bácsi Ket al. LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporosis International, 20(4), 639–645. https://doi.org/10.1007/s00198-008-0709-9
Koek, W. N., et al. (2010). The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 25(9), 1980–1987. https://doi.org/10.1002/jbmr.83
Kuchay RA et al. Effect of C/T -13910 cis-acting regulatory variant on expression and activity of lactase in Indian children and its implication for early genetic screening of adult-type hypolactasia. Clin Chim Acta. 2011 Oct 9,412(21-22):1924-30. https://doi.org/10.1016/j.cca.2011.06.032
Laaksonen MM et al. Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. Br J Nutr. 2009 Jul,102(1):8-17. https://doi.org/10.1017/S0007114508184677
Tolonen S et al. Cardiovascular Risk in Young Finns Study Group. (2011). Lactase Gene C/T−13910 Polymorphism, Calcium Intake, and pQCT Bone Traits in Finnish Adults. Calcified Tissue International, 88(2), 153–161. https://doi.org/10.1007/s00223-010-9440-6OL
IL1RN (rs419598):
Braosi et al. Analysis of IL1 gene polymorphisms and transcript levels in periodontal and chronic kidney disease. Cytokine. 2012 Oct,60(1):76-82.
Trevilatto et al. Association of IL1 gene polymorphisms with chronic periodontitis in Brazilians. Arch Oral Biol. 2011 Jan,56(1):54-62.
Baradaran-Rahimi et al. Association of interleukin-1 receptor antagonist gene polymorphisms with generalized aggressive periodontitis in an Iranian population. J Periodontol. 2010 Sep,81(9):1342-6.
Komatsu et al. Association of interleukin-1 receptor antagonist +2018 gene polymorphism with Japanese chronic periodontitis patients using a novel genotyping method. Int J Immunogenet. 2008 Apr,35(2):165-70.
Jacobi-Gresser et al. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg. 2013 Apr,42(4):537-43.
Laine et al., IL-1RN gene polymorphism is associated with peri-implantitis. Clin Oral Implants Res. 2006 Aug, 17(4):380-5.
IL6 (rs1800795):
Nibali et al. Association between periodontitis and common variants in the promoter of the interleukin-6 gene. Cytokine. 2009 Jan,45(1):50-4.
de Sá et al. Association of CD14, IL1B, IL6, IL10 and TNFA functional gene polymorphisms with symptomatic dental abscesses. Int Endod J. 2007 Jul,40(7):563-72.
Babel et al. Analysis of tumor necrosis factor-alpha, transforming growth factor-beta, interleukin-10, IL-6, and interferon-gamma gene polymorphisms in patients with chronic periodontitis. J Periodontol. 2006 Dec,77(12):1978-83.
IL1A (rs1800587):
Jacobi-Gresser et al. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg. 2013 Apr,42(4):537-43.
Nikolopoulos et al. Cytokine gene polymorphisms in periodontal disease: a meta analysis of 53 studies including 4178 cases and 4590 controls. J Clin Periodontol 2008.
Jansson et al., Clinical consequences of IL-1 genotype on early implant failures in patients under periodontal maintenance. Clin Implant Dent Relat Res. 2005, 7(1)51-9.
Feloutzis et al., IL-1 gene polymorphism and smoking as risk factors for peri-implant bone loss in a wellmaintained population. Clin Oral Implants Res. 2003, 14(1)10-7.
IL1B (rs1143634):
Gore et al. Interleukin-1beta+3953 allele 2: association with disease status in adult periodontitis. J Clin Periodontol. 1998 Oct,25(10):781-5.
Galbraith et al. Polymorphic cytokine genotypes as markers of disease severity in adult periodontitis. J Clin Periodontol. 1999 Nov,26(11):705-9.
Jacobi-Gresser et al. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg. 2013 Apr,42(4):537-43.
Jansson et al., Clinical consequences of IL-1 genotype on early implant failures in patients under periodontal maintenance. Clin Implant Dent Relat Res. 2005 7(1):51-9.
Feloutzis et al., IL-1 gene polymorphism and smoking as risk factors for peri-implant bone loss in a wellmaintained population. Clin Oral Implants Res. 2003, 14(1):10-7.
TNF Alpha (rs1800629):
Jacobi-Gresser et al. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg. 2013 Apr,42(4):537-43.
Xue-Mei Wei et al. Tumor necrosis factor-α G-308A (rs1800629) polymorphism and aggressive periodontitis susceptibility: A meta-analysis of 16 case control studies. Sci Rep. 2016, 6: 19099
Dereka X et al. A systematic review on the association between genetic predisposition and dental implant biological complications. Clinical Oral Implants Research, 23(7), 775–788.
Nikolopoulos G et al. Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls. Journal of Clinical Periodontology, 35(9), 754–767.
TCF2 (rs4430796):
Zheng et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008 Feb 28,358(9):910-9.
Levin et al. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res. 2008 Aug 15,68(16):6492-5.
Gudmundsson et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007 Aug,39(8):977-83.
LOC124685 (rs1859962):
Sun et al. Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations. Prostate. 2008 Sep 1,68(12):1257-62.
Levin et al. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res. 2008 Aug 15,68(16):6492-5.
Zheng et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008 Feb 28,358(9):910-9
8Q24 Region 1 (rs1447295):
Zheng et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst. 2007 Oct 17,99(20):1525-33. Epub 2007 Oct 9.
Amundadottir et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006 Jun,38(6):652-8. Epub 2006 May 7.
Freedman et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A. 2006 Sep 19,103(38):14068-73. Epub 2006 Aug 31.
8Q24 Region 2 (rs16901979):
Zheng et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008 Feb 28,358(9):910-9
Cheng et al. 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet. 2008 Apr,16(4):496-505.
Levin et al. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res. 2008 Aug 15,68(16):6492-5.
8Q24 Region 3 (rs6983267):
Haiman et al. A common genetic risk factor for colorectal and prostate cancer. Nat Genet. 2007 Aug,39(8):954-6.
Yeager et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007 May,39(5):645-9. Epub 2007 Apr 1.
Zheng et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008 Feb 28,358(9):910-9.
Cheng et al. 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet. 2008 Apr,16(4):496-505.
VDR (rs2107301):
Schäfer et al. No association of vitamin D metabolism-related polymorphisms and melanoma risk as well as melanoma prognosis: a case-control study. Arch Dermatol Res. 2012 Jul,304(5):353-61.
Holt et al. Vitamin D pathway gene variants and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2009 Jun,18(6):1929-33.
Holick et al. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007 Oct,16(10):1990-9.
8Q24 (rs4242382):
Zheng et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst. 2007 Oct 17,99(20):1525-33. Epub 2007 Oct 9.
Zheng et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008 Feb 28,358(9):910-9.
Fitzgerald et al. Analysis of recently identified prostate cancer susceptibility loci in a population-based study: associations with family history and clinical features. Clin Cancer Res. 2009 May 1,15(9):3231-7.
8Q24 (rs7837688):
Zheng et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst. 2007 Oct 17,99(20):1525-33. Epub 2007 Oct 9.
Zheng et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008 Feb 28,358(9):910-9.
Lindstrom et al. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers–results from BPC3. PLoS One. 2011 Feb 24,6(2):e17142.
8Q24 (rs2011077):
Ma et al. Polymorphisms of fibroblast growth factor receptor 4 have association with the development of prostate cancer and benign prostatic hyperplasia and the progression of prostate cancer in a Japanese population. Int J Cancer. 2008 Dec 1,123(11):2574-9.
RNASEL (rs627928):
Mi et al. An update analysis of two polymorphisms in encoding ribonuclease L gene and prostate cancer risk: involving 13,372 cases and 11,953 controls. Genes Nutr. 2011 Nov,6(4):397-402.
Breyer et al. Genetic variants and prostate cancer risk: candidate replication and exploration of viral restriction genes. Cancer Epidemiol Biomarkers Prev. 2009 Jul,18(7):2137-44.
Li et al. RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis. Clin Cancer Res. 2006 Oct 1,12(19):5713-9.
TNF-α (rs1800629):
Dayer et al. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii3–ii10. https://doi.org/10.1093/rheumatology/keg326
Goldring et al. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii11–ii16. https://doi.org/10.1093/rheumatology/keg327
Oregón-Romero et al. Tumor necrosis factor alpha-308 and -238 polymorphisms in rheumatoid arthritis. Association with messenger RNA expression and sTNF-alpha. J Investig Med. 2008 Oct,56(7):937-43. https://doi.org/10.2310/JIM.0b013e318189152b
IL1A (rs1800587):
Dayer et al. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii3–ii10. https://doi.org/10.1093/rheumatology/keg326
Goldring et al. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii11–ii16. https://doi.org/10.1093/rheumatology/keg327
Virtanen et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine (Phila Pa 1976). 2007 May 1,32(10):1129-34. https://doi.org/10.1097/01.brs.0000261473.03274.5c
COMT (rs4680):
Wang Y et al. Analysis of association between the catechol-O-methyltransferase (COMT) gene and negative symptoms in chronic schizophrenia. Psychiatry Res. 2010 Sep 30,179(2):147-50.
Bhakta SG et al. The COMT Met158 allele and violence in schizophrenia: a meta-analysis. Schizophr Res. 2012 Sep,140(1-3):192-7.
Lock AA et al. Epistasis between COMT Val158Met and DRD3 Ser9Gly polymorphisms and cognitive function in schizophrenia: genetic influence on dopamine transmission. Rev Bras Psiquiatr. 2015 Jul-Sep,37(3):235-41.
Singh JP et al. A meta-analysis of the Val158Met COMT polymorphism and violent behavior in schizophrenia. PLoS One. 2012,7(8):e43423. doi: 10.1371/journal.pone.0043423. Epub 2012 Aug 14.
Bhakta SG et al. The COMT Met158 allele and violence in schizophrenia: a meta-analysis. Schizophr Res. 2012 Sep,140(1-3):192-7. doi: 10.1016/j.schres.2012.06.026. Epub 2012 Jul 10.
Tosato S et al. Effect of COMT genotype on aggressive behaviour in a community cohort of schizophrenic patients. Neurosci Lett. 2011 May 9,495(1):17-21.
Docherty AR et al. Anhedonia as a phenotype for the Val158Met COMT polymorphism in relatives of patients with schizophrenia. J Abnorm Psychol. 2008 Nov,117(4):788-98.
Kim YR et al. Catechol-O-methyltransferase Val158Met polymorphism in relation to aggressive schizophrenia in a Korean population. Eur Neuropsychopharmacol. 2008 Nov,18(11):820-5.
Zinkstok J et al. Catechol-O-methyltransferase gene and obsessive-compulsive symptoms in patients with recent-onset schizophrenia: preliminary results. Psychiatry Res. 2008 Jan 15,157(1-3):1-8. Epub 2007 Sep 12.
MTHFR (rs1801133):
Roffman JL et al. MTHFR 677C –> T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val –> Met. Proc Natl Acad Sci U S A. 2008 Nov 11,105(45):17573-8.
Roffman JL et al. Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia. Schizophr Bull. 2013 Mar,39(2):330-8.
Hei G et al. Association of serum folic acid and homocysteine levels and 5, 10-methylenetetrahydrofolate reductase gene polymorphism with schizophrenia. Zhonghua Yi Xue Za Zhi. 2014 Oct 14,94(37):2897-901.
El-Hadidy MA et al. MTHFR gene polymorphism and age of onset of schizophrenia and bipolar disorder. Biomed Res Int. 2014,2014:318483. doi: 10.1155/2014/318483. Epub 2014 Jul 3.
t al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm (Vienna). 2015 Feb,122(2):307-20.
Nishi A et al. Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677T polymorphism in schizophrenia. Schizophr Bull. 2014 Sep,40(5):1154-63. doi: 10.1093/schbul/sbt154. Epub 2014 Feb 17.
Zhang Y et al. Association of MTHFR C677T polymorphism with schizophrenia and its effect on episodic memory and gray matter density in patients. Behav Brain Res. 2013 Apr 15,243:146-52. doi: 10.1016/j.bbr.2012.12.061. Epub 2013 Jan 12.
Lajin B et al. Association between MTHFR C677T and A1298C, and MTRR A66G polymorphisms and susceptibility to schizophrenia in a Syrian study cohort. Asian J Psychiatr. 2012 Jun,5(2):144-9. doi: 10.1016/j.ajp.2012.03.002. Epub 2012 Apr 26.
Peerbooms OL et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun. 2011 Nov,25(8):1530-43. doi: 10.1016/j.bbi.2010.12.006. Epub 2010 Dec 24.
Muntjewerff JW et al. Effects of season of birth and a common MTHFR gene variant on the risk of schizophrenia. Eur Neuropsychopharmacol. 2011 Apr,21(4):300-5. doi: 10.1016/j.euroneuro.2010.10.001. Epub 2010 Nov 19.
Feng LG et al. Association of plasma homocysteine and methylenetetrahydrofolate reductase C677T gene variant with schizophrenia: A Chinese Han population-based case-control study. Psychiatry Res. 2009 Aug 15,168(3):205-8. doi: 10.1016/j.psychres.2008.05.009. Epub 2009 Jun 28.
Roffmann JL et al. Interactive effects of COMT Val108/158Met and MTHFR C677T on executive function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2008 Sep 5,147B(6):990-5.
Roffman JL et al. Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biol Psychiatry. 2008 Jan 1,63(1):42-8. Epub 2007 Jun 1.
Roffman JL et al. Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. Schizophr Res. 2007 May,92(1-3):181-8. Epub 2007 Mar 6.
Gilbody S et al. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol. 2007 Jan 1,165(1):1-13. Epub 2006 Oct 30.
Lee YS et al. Serum homocysteine, folate level and methylenetetrahydrofolate reductase 677, 1298 gene polymorphism in Korean schizophrenic patients. Neuroreport. 2006 May 15,17(7):743-6.
Kempisty B et al. Association of 677C>T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene with bipolar disorder and schizophrenia. Neurosci Lett. 2006 Jun 12,400(3):267-71. Epub 2006 Mar 20.
Sazci A et al. Association of the C677T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene with schizophrenia: association is significant in men but not in women. Prog Neuropsychopharmacol Biol Psychiatry. 2005 Sep,29(7):1113-23.
Muntjewerff JW et al. Hyperhomocysteinemia, methylenetetrahydrofolate reductase 677TT genotype, and the risk for schizophrenia: a Dutch population based case-control study. Am J Med Genet B Neuropsychiatr Genet. 2005 May 5,135B(1):69-72.
Sazci A et al. Methylenetetrahydrofolate reductase gene polymorphisms in patients with schizophrenia. Brain Res Mol Brain Res. 2003 Sep 10,117(1):104-7.
Joober R et al. Association between the methylenetetrahydrofolate reductase 677C–>T missense mutation and schizophrenia. Mol Psychiatry. 2000 May,5(3):323-6.
Arinami T et al. Methylenetetrahydrofolate reductase variant and schizophrenia/depression. Am J Med Genet. 1997 Sep 19,74(5):526-8.
MTHFR (rs1801131):
Hu CY et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm (Vienna). 2015 Feb,122(2):307-20
Lajin B et al. Association between MTHFR C677T and A1298C, and MTRR A66G polymorphisms and susceptibility to schizophrenia in a Syrian study cohort. Asian J Psychiatr. 2012 Jun,5(2):144-9. doi: 10.1016/j.ajp.2012.03.002. Epub 2012 Apr 26.
Zintzaras, E., 2006. C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a metaanalysis of genetic association studies. Psychiatr. Genet. 16, 105–115.
Sazci A et al. Association of the C677T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene with schizophrenia: association is significant in men but not in women. Prog Neuropsychopharmacol Biol Psychiatry. 2005 Sep,29(7):1113-23.
Gilbody, S., Lewis, S., Lightfoot, T., 2007. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am. J. Epidemiol. 165, 1–13.
BDNF (rs6265):
Zakharyan R et al. Functional variants of the genes involved in neurodevelopment and susceptibility to schizophrenia in an Armenian population. Hum Immunol. 2011 Sep,72(9):746-8.
Chao HM et al. BDNF Val66Met variant and age of onset in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2008 Jun 5,147B(4):505-6.
Kheirollahi M et al. Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism and Risk of Schizophrenia: A Meta-analysis of Case-Control Studies. Cell Mol Neurobiol. 2016 Jan,36(1):1-10.
Sun MM et al. BDNF Val66Met polymorphism and anxiety/depression symptoms in schizophrenia in a Chinese Han population. Psychiatr Genet. 2013 Jun,23(3):124-9.
Sun MM et al. Association study of brain-derived neurotrophic factor Val66Met polymorphism and clinical characteristics of first episode schizophrenia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012 Apr,29(2):155-8.
Gratacòs M et al. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to Substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry. 2007 Apr 1,61(7):911-22. Epub 2007 Jan 9.
Faktor-V (rs6025):
Juul et al. Factor V Leiden and the risk for venous thromboembolism in the adult Danish population. Ann Intern Med. 2004 Mar 2,140(5):330-7.
Brenner et al. Venous Thromboembolism Associated With Double Heterozygosity for R506Q Mutation of Factor V and for T298M Mutation of Protein C in a Large Family of a Previously Described Homozygous Protein C -Deficient Newborn With Massive Thrombosis: Blood. 1996 Aug 1,88(3):877-80.
Zee et al. An Evaluation of Candidate Genes of Inflammation and Thrombosis in Relation to the RISK of Venous Thromboembolism: Circulation. Feb 2009, 2(1): 57–62.
Rosendaal et al. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Br J Haematol. 2002 Mar,116(4):851-4.
Kamphuisen et al. Thrombophilia screening: a matter of debate. Neth J Med. 2004,62:180-187
Ridker et al. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening, Jama 277 (1997) 1305-1307.
Faktor-II (rs1799963):
Zee et al. An Evaluation of Candidate Genes of Inflammation and Thrombosis in Relation to the Risk of Venous Thromboembolism: The Women’s Genome Health Study. Circ Cardiovasc Genet. Feb 2009, 2(1): 57–62.
Rosendaal et al. Hormonal replacement therapy, prothrombotic mutations and the risk of venous thrombosis. Br J Haematol. 2002 Mar,116(4):851-4.
Ye et al. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet. 2006 Feb 25,367(9511):651-8.
PAI1 (rs1799889):
Tsantes et al. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis. A meta-analysis. Thromb Haemost.
Fernandes et al. 4G/5G polymorphism modulates PAI-1 circulating levels in obese women. Mol Cell Biochem. 2012 May,364(1-2):299-301.
Gardemann et al. The 4G4G genotype of the plasminogen activator inhibitor 4G/5G gene polymorphism is associated with coronary atherosclerosis in patients at high risk for this disease. Thromb Haemost. 1999 Sep,82(3):1121-6.
Rosendaal et al. Hormonal replacement therapy, prothrombotic mutations and the risk of venous thrombosis. Br J Haematol. 2002 Mar,116(4):851-4.
Ye et al. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet. 2006 Feb 25,367(9511):651-8.
MTHFR (rs1801133):
M.G. Andreassi et al. Factor V Leiden, prothrombin G20210A substitution and hormone therapy: indications for molecular screening, Clin Chem Lab Med 44 (2006) 514-521.
I. Fermo et al. Prevalence of moderate hyperhomocysteinemia in patients with early-onset venous and VENOUS occlusive disease, Annals of internal medicine 123 (1995) 747-753.
Ventura P et al. Hyperhomocysteinemia and MTHFR C677T polymorphism in patients with portal vein thrombosis complicating liver cirrhosis. Thromb Res. 2016 May,141:189-95.
IGTB3 (rs5918):
Undas et al. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation. 2001 Nov 27,104(22):2666-72.
Weiss et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med. 1996
Erdman V et al. OS 08-03 PHARMACOGENETIC MARKERS OF SURVIVAL. J Hypertens. 2016 Sep,34 Suppl 1 – ISH 2016 Abstract Book:e68.
Goodman T et al. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol. 2008 Aug,66(2):222-32
Je nach gewählter genetischer Analyse werden bis zu 110 genetische Variationen analysiert, welche allesamt bestens erforscht und gut dokumentiert sind. Um in unser Portfolio aufgenommen zu werden, muss jede Genvariante durch unabhängige, wissenschaftlich akkreditierte und von Experten begutachtete Studien untersucht und verifiziert werden.
Alle NovoMedic-Analysen werden von unserem Partnerlabor direkt hier in Eugendorf, Österreich durchgeführt. Das gesamte Laborpersonal verfügt dabei über langjährige Erfahrung im Bereich der Humangenetik und das Labor selbst erfüllt die zwingenden Anforderungen der Österreichischen Gentechnikkommission sowie das freiwillige ISO-Qualitätsmanagementsystem. Das Labor ist außerdem für die Durchführung medizinisch-genetischer Analysen zugelassen – das ist der höchste Akkreditierungsstandard im Bereich der Genomik.
Wir arbeiten stets daran diese Liste möglichst aktuell zu halten, aber die Wissenschaft entwickelt sich besonders im Bereich der Genetik sehr schnell weiter. Sollten Sie daher Fragen oder Anregungen zu den oben genannten Quelltexten haben, freuen wir uns sehr von Ihnen zu hören!